A Retrospective Machine Learning Analysis to Predict 3-Month Nonunion of Unstable Distal Clavicle Fracture Patients Treated with Open Reduction and Internal Fixation.
IF 2.8 3区 医学Q1 Pharmacology, Toxicology and Pharmaceutics
Changke Ma, Wei Lu, Limei Liang, Kaizong Huang, Jianjun Zou
{"title":"A Retrospective Machine Learning Analysis to Predict 3-Month Nonunion of Unstable Distal Clavicle Fracture Patients Treated with Open Reduction and Internal Fixation.","authors":"Changke Ma, Wei Lu, Limei Liang, Kaizong Huang, Jianjun Zou","doi":"10.2147/TCRM.S518774","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This retrospective study aims to predict the risk of 3-month nonunion in patients with unstable distal clavicle fractures (UDCFs) treated with open reduction and internal fixation (ORIF) using machine learning (ML) methods. ML was chosen over traditional statistical approaches because of its superior ability to capture complex nonlinear interactions and to handle imbalanced datasets.</p><p><strong>Methods: </strong>We collected UDCFs patients at Nanjing Luhe People's Hospital (China) between January 2015 and May 2023. The unfavorable outcome was defined as 3-month nonunion, as represented by disappeared fracture line and continuous callus. Patients meeting inclusion criteria were randomly divided into training (70%) and testing (30%) sets. Five ML models (logistic regression, random forest classifier, extreme gradient boosting, multi-layer perceptron, and category boosting) were developed. Those models were selected based on univariate analysis and refined using the Least Absolute Shrinkage and Selection Operator (LASSO). Model performance was evaluated using AUROC, AUPRC, accuracy, sensitivity, specificity, F1 score, and calibration curves.</p><p><strong>Results: </strong>A total of 248 patients were finally included into this study, and 76 (30.6%) of them had unfavorable outcomes. While all five models showed similar trends, the CatBoost model achieved the highest performance (AUROC = 0.863, AUPRC = 0.801) with consistent identification of the risk factors mentioned above. The SHAP values identified the CCD as the significant predictor for assessing the risk of 3-month nonunion in patients with UDCFs within the Chinese demographic.</p><p><strong>Conclusion: </strong>The refined model incorporated four readily accessible variables, wherein the CCD, HDL levels, and blood loss were associated with an elevated risk of nonunion. Conversely, the application of nerve blocks, including postoperative block, was correlated with a reduced risk. Our results suggest that ML, particularly the CatBoost model, can be integrated into clinical workflows to aid surgeons in optimizing intraoperative techniques and postoperative management to reduce nonunion rates.</p>","PeriodicalId":22977,"journal":{"name":"Therapeutics and Clinical Risk Management","volume":"21 ","pages":"633-645"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutics and Clinical Risk Management","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/TCRM.S518774","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This retrospective study aims to predict the risk of 3-month nonunion in patients with unstable distal clavicle fractures (UDCFs) treated with open reduction and internal fixation (ORIF) using machine learning (ML) methods. ML was chosen over traditional statistical approaches because of its superior ability to capture complex nonlinear interactions and to handle imbalanced datasets.
Methods: We collected UDCFs patients at Nanjing Luhe People's Hospital (China) between January 2015 and May 2023. The unfavorable outcome was defined as 3-month nonunion, as represented by disappeared fracture line and continuous callus. Patients meeting inclusion criteria were randomly divided into training (70%) and testing (30%) sets. Five ML models (logistic regression, random forest classifier, extreme gradient boosting, multi-layer perceptron, and category boosting) were developed. Those models were selected based on univariate analysis and refined using the Least Absolute Shrinkage and Selection Operator (LASSO). Model performance was evaluated using AUROC, AUPRC, accuracy, sensitivity, specificity, F1 score, and calibration curves.
Results: A total of 248 patients were finally included into this study, and 76 (30.6%) of them had unfavorable outcomes. While all five models showed similar trends, the CatBoost model achieved the highest performance (AUROC = 0.863, AUPRC = 0.801) with consistent identification of the risk factors mentioned above. The SHAP values identified the CCD as the significant predictor for assessing the risk of 3-month nonunion in patients with UDCFs within the Chinese demographic.
Conclusion: The refined model incorporated four readily accessible variables, wherein the CCD, HDL levels, and blood loss were associated with an elevated risk of nonunion. Conversely, the application of nerve blocks, including postoperative block, was correlated with a reduced risk. Our results suggest that ML, particularly the CatBoost model, can be integrated into clinical workflows to aid surgeons in optimizing intraoperative techniques and postoperative management to reduce nonunion rates.
期刊介绍:
Therapeutics and Clinical Risk Management is an international, peer-reviewed journal of clinical therapeutics and risk management, focusing on concise rapid reporting of clinical studies in all therapeutic areas, outcomes, safety, and programs for the effective, safe, and sustained use of medicines, therapeutic and surgical interventions in all clinical areas.
The journal welcomes submissions covering original research, clinical and epidemiological studies, reviews, guidelines, expert opinion and commentary. The journal will consider case reports but only if they make a valuable and original contribution to the literature.
As of 18th March 2019, Therapeutics and Clinical Risk Management will no longer consider meta-analyses for publication.
The journal does not accept study protocols, animal-based or cell line-based studies.