Measuring the Effects of Tunable Alkanethiol Monolayers on the Adsorption and Collision Dynamics of Platinum Nanoparticles.

ACS electrochemistry Pub Date : 2025-03-06 Epub Date: 2024-11-22 DOI:10.1021/acselectrochem.4c00068
Audrey Pumford, Lindsey M Pumford, Abigail Butcher, Ryan J White
{"title":"Measuring the Effects of Tunable Alkanethiol Monolayers on the Adsorption and Collision Dynamics of Platinum Nanoparticles.","authors":"Audrey Pumford, Lindsey M Pumford, Abigail Butcher, Ryan J White","doi":"10.1021/acselectrochem.4c00068","DOIUrl":null,"url":null,"abstract":"<p><p>Platinum nanoparticles (PtNPs) catalyze the Hydrogen Evolution Reaction upon colliding at a catalytically inactive electrode surface when sufficient potential is applied, and in the presence of adequate hydrogen ion concentration. Here, we investigated nanoscale interactions of PtNPs at alkanethiol modified gold electrode surfaces and examined the effects of monolayer hydrophilicity/hydrophobicity on single particle collision dynamics. After colliding with and adsorbing onto the modified electrode surface, PtNPs generate measurable cathodic current arising from the reduction of hydrogen. Each single particle collision is indicated by a spike-step or spike of current in the current time trace. The shape, frequency, and size of these current steps are dependent on the terminal chemistry of the alkanethiol covalently bound to the electrode surface. Using the collisional frequency as a function of PtNP concentration, we determined the rate of particle adsorption, <math> <msub><mrow><mi>k</mi></mrow> <mrow><mtext>ads</mtext></mrow> </msub> </math> , to be 2.23 × 10<sup>-6</sup> cm/s and 8.85 × 10<sup>-6</sup> cm/s for -CH<sub>3</sub> and -OH terminated surfaces, respectively. Electrodes modified with a mixture of alkanethiols (-CH<sub>3</sub>/-OH) exhibited collision frequencies that scale linearly with the ratio of hydrophilicity of the alkanethiol immobilized on the electrode surface. The results indicate the dependence of intermolecular effects on PtNP collision dynamics at the electrode surface, with hydrophobic-dominating surfaces having the least observed collisions. This study provides insights into the influence of surface chemistry on single nanoparticle interactions, which could advance the designs of biosensors and more efficient nanocatalysts by offering a deeper understanding of the interfacial mechanism of PtNPs on modified electrode surfaces.</p>","PeriodicalId":520400,"journal":{"name":"ACS electrochemistry","volume":"1 3","pages":"378-385"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acselectrochem.4c00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Platinum nanoparticles (PtNPs) catalyze the Hydrogen Evolution Reaction upon colliding at a catalytically inactive electrode surface when sufficient potential is applied, and in the presence of adequate hydrogen ion concentration. Here, we investigated nanoscale interactions of PtNPs at alkanethiol modified gold electrode surfaces and examined the effects of monolayer hydrophilicity/hydrophobicity on single particle collision dynamics. After colliding with and adsorbing onto the modified electrode surface, PtNPs generate measurable cathodic current arising from the reduction of hydrogen. Each single particle collision is indicated by a spike-step or spike of current in the current time trace. The shape, frequency, and size of these current steps are dependent on the terminal chemistry of the alkanethiol covalently bound to the electrode surface. Using the collisional frequency as a function of PtNP concentration, we determined the rate of particle adsorption, k ads , to be 2.23 × 10-6 cm/s and 8.85 × 10-6 cm/s for -CH3 and -OH terminated surfaces, respectively. Electrodes modified with a mixture of alkanethiols (-CH3/-OH) exhibited collision frequencies that scale linearly with the ratio of hydrophilicity of the alkanethiol immobilized on the electrode surface. The results indicate the dependence of intermolecular effects on PtNP collision dynamics at the electrode surface, with hydrophobic-dominating surfaces having the least observed collisions. This study provides insights into the influence of surface chemistry on single nanoparticle interactions, which could advance the designs of biosensors and more efficient nanocatalysts by offering a deeper understanding of the interfacial mechanism of PtNPs on modified electrode surfaces.

可调烷硫醇单层膜对铂纳米粒子吸附和碰撞动力学的影响。
铂纳米粒子(PtNPs)在有足够的电位和足够的氢离子浓度的情况下,在无催化活性的电极表面发生碰撞,催化析氢反应。在这里,我们研究了PtNPs在烷硫醇修饰金电极表面的纳米级相互作用,并研究了单层亲水性/疏水性对单粒子碰撞动力学的影响。PtNPs与修饰电极表面发生碰撞并吸附后,产生可测量的由氢还原产生的阴极电流。每次单个粒子碰撞都用电流时间轨迹中的一个尖峰步长或尖峰电流来表示。这些电流步骤的形状、频率和大小取决于与电极表面共价结合的烷硫醇的末端化学性质。利用碰撞频率作为PtNP浓度的函数,我们确定了-CH3和-OH端部表面的颗粒吸附速率k ads分别为2.23 × 10-6 cm/s和8.85 × 10-6 cm/s。用烷硫醇混合物(-CH3/-OH)修饰的电极,其碰撞频率与固定在电极表面的烷硫醇的亲水性比例成线性关系。结果表明分子间效应对PtNP在电极表面的碰撞动力学的依赖性,以疏水为主的表面具有最少观察到的碰撞。该研究提供了表面化学对单纳米粒子相互作用的影响,通过对PtNPs在修饰电极表面上的界面机制的更深入了解,可以推进生物传感器和更高效纳米催化剂的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信