A new family of q-hypergeometric congruences from Andrews' multi-series transformation.

IF 1.8 2区 数学 Q1 MATHEMATICS
Victor J W Guo, Michael J Schlosser
{"title":"A new family of <i>q</i>-hypergeometric congruences from Andrews' multi-series transformation.","authors":"Victor J W Guo, Michael J Schlosser","doi":"10.1007/s13398-025-01721-4","DOIUrl":null,"url":null,"abstract":"<p><p>We deduce a new family of <i>q</i>-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial from George Andrews' multi-series extension of the Watson transformation. A Karlsson-Minton type summation for very-well-poised basic hypergeometric series due to George Gasper also plays an important role in our proof. We put forward two relevant conjectures on supercongruences and <i>q</i>-supercongruences for further study.</p>","PeriodicalId":54471,"journal":{"name":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","volume":"119 2","pages":"59"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985581/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-025-01721-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We deduce a new family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial from George Andrews' multi-series extension of the Watson transformation. A Karlsson-Minton type summation for very-well-poised basic hypergeometric series due to George Gasper also plays an important role in our proof. We put forward two relevant conjectures on supercongruences and q-supercongruences for further study.

从Andrews的多级数变换中得到一个新的q-超几何同余族。
我们从George Andrews对Watson变换的多级数扩展中,导出了一组以环切多项式的四次幂模的q-超几何同余。由George Gasper提出的非常平衡的基本超几何级数的Karlsson-Minton型求和在我们的证明中也起了重要作用。我们提出了关于超同余和q-超同余的两个相关猜想,以供进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
17.20%
发文量
151
审稿时长
>12 weeks
期刊介绍: The journal publishes, in English language only, high-quality Research Articles covering Algebra; Applied Mathematics; Computational Sciences; Geometry and Topology; Mathematical Analysis; Statistics and Operations Research. Also featured are Survey Articles in every mathematical field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信