{"title":"Modeling Study of Effects of Tubulin Carboxy-Terminal Tails on Dynamics of Kinesin and Dynein Motors.","authors":"Ping Xie","doi":"10.1007/s10930-025-10267-8","DOIUrl":null,"url":null,"abstract":"<p><p>The unstructured carboxy-terminal tails (CTTs) on tubulin α- and β-subunits can affect the motility of kinesin and dynein motors on microtubules. The CTTs can also affect the microtubule deoplymerase activity of kinesin motors. However, the underlying molecular mechanism of CTTs affecting the dynamics of kinesin and dynein motors is illusive. Here, a model for the effect of CTTs on the kinesin and dynein motors is presented, where it is proposed that the CTTs can affect both the activation energy for the ATPase activity of the kinesin and dynein motors and the microtubule-binding energy. With the model, the velocity and run length of human kinesin-1, human kinesin-2, C. elegans kinesin-2 and yeast cytoplasmic dynein as well as the microtubule depolymerization rate of kinesin-13 MCAK on microtubules with the deletion of CTT on α-subunit, the deletion of CTT on β-subunit and the deletion of both CTTs relative to those on microtubules with no deletion of CTTs are studied theoretically. With 18 parameter values the totally 27 published experimental data on the dynamics of the five types of the kinesin and dynein motors are reproduced well. The predicted results are also provided.</p>","PeriodicalId":94249,"journal":{"name":"The protein journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The protein journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10930-025-10267-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The unstructured carboxy-terminal tails (CTTs) on tubulin α- and β-subunits can affect the motility of kinesin and dynein motors on microtubules. The CTTs can also affect the microtubule deoplymerase activity of kinesin motors. However, the underlying molecular mechanism of CTTs affecting the dynamics of kinesin and dynein motors is illusive. Here, a model for the effect of CTTs on the kinesin and dynein motors is presented, where it is proposed that the CTTs can affect both the activation energy for the ATPase activity of the kinesin and dynein motors and the microtubule-binding energy. With the model, the velocity and run length of human kinesin-1, human kinesin-2, C. elegans kinesin-2 and yeast cytoplasmic dynein as well as the microtubule depolymerization rate of kinesin-13 MCAK on microtubules with the deletion of CTT on α-subunit, the deletion of CTT on β-subunit and the deletion of both CTTs relative to those on microtubules with no deletion of CTTs are studied theoretically. With 18 parameter values the totally 27 published experimental data on the dynamics of the five types of the kinesin and dynein motors are reproduced well. The predicted results are also provided.