A deep learning model for clinical outcome prediction using longitudinal inpatient electronic health records.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-04-10 eCollection Date: 2025-04-01 DOI:10.1093/jamiaopen/ooaf026
Ruichen Rong, Zifan Gu, Hongyin Lai, Tanna L Nelson, Tony Keller, Clark Walker, Kevin W Jin, Catherine Chen, Ann Marie Navar, Ferdinand Velasco, Eric D Peterson, Guanghua Xiao, Donghan M Yang, Yang Xie
{"title":"A deep learning model for clinical outcome prediction using longitudinal inpatient electronic health records.","authors":"Ruichen Rong, Zifan Gu, Hongyin Lai, Tanna L Nelson, Tony Keller, Clark Walker, Kevin W Jin, Catherine Chen, Ann Marie Navar, Ferdinand Velasco, Eric D Peterson, Guanghua Xiao, Donghan M Yang, Yang Xie","doi":"10.1093/jamiaopen/ooaf026","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Recent advances in deep learning show significant potential in analyzing continuous monitoring electronic health records (EHR) data for clinical outcome prediction. We aim to develop a Transformer-based, Encounter-level Clinical Outcome (TECO) model to predict mortality in the intensive care unit (ICU) using inpatient EHR data.</p><p><strong>Materials and methods: </strong>The TECO model was developed using multiple baseline and time-dependent clinical variables from 2579 hospitalized COVID-19 patients to predict ICU mortality and was validated externally in an acute respiratory distress syndrome cohort (<i>n</i> = 2799) and a sepsis cohort (<i>n</i> = 6622) from the Medical Information Mart for Intensive Care IV (MIMIC-IV). Model performance was evaluated based on the area under the receiver operating characteristic (AUC) and compared with Epic Deterioration Index (EDI), random forest (RF), and extreme gradient boosting (XGBoost).</p><p><strong>Results: </strong>In the COVID-19 development dataset, TECO achieved higher AUC (0.89-0.97) across various time intervals compared to EDI (0.86-0.95), RF (0.87-0.96), and XGBoost (0.88-0.96). In the 2 MIMIC testing datasets (EDI not available), TECO yielded higher AUC (0.65-0.77) than RF (0.59-0.75) and XGBoost (0.59-0.74). In addition, TECO was able to identify clinically interpretable features that were correlated with the outcome.</p><p><strong>Discussion: </strong>The TECO model outperformed proprietary metrics and conventional machine learning models in predicting ICU mortality among patients with COVID-19, widespread inflammation, respiratory illness, and other organ failures.</p><p><strong>Conclusion: </strong>The TECO model demonstrates a strong capability for predicting ICU mortality using continuous monitoring data. While further validation is needed, TECO has the potential to serve as a powerful early warning tool across various diseases in inpatient settings.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 2","pages":"ooaf026"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984207/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooaf026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Recent advances in deep learning show significant potential in analyzing continuous monitoring electronic health records (EHR) data for clinical outcome prediction. We aim to develop a Transformer-based, Encounter-level Clinical Outcome (TECO) model to predict mortality in the intensive care unit (ICU) using inpatient EHR data.

Materials and methods: The TECO model was developed using multiple baseline and time-dependent clinical variables from 2579 hospitalized COVID-19 patients to predict ICU mortality and was validated externally in an acute respiratory distress syndrome cohort (n = 2799) and a sepsis cohort (n = 6622) from the Medical Information Mart for Intensive Care IV (MIMIC-IV). Model performance was evaluated based on the area under the receiver operating characteristic (AUC) and compared with Epic Deterioration Index (EDI), random forest (RF), and extreme gradient boosting (XGBoost).

Results: In the COVID-19 development dataset, TECO achieved higher AUC (0.89-0.97) across various time intervals compared to EDI (0.86-0.95), RF (0.87-0.96), and XGBoost (0.88-0.96). In the 2 MIMIC testing datasets (EDI not available), TECO yielded higher AUC (0.65-0.77) than RF (0.59-0.75) and XGBoost (0.59-0.74). In addition, TECO was able to identify clinically interpretable features that were correlated with the outcome.

Discussion: The TECO model outperformed proprietary metrics and conventional machine learning models in predicting ICU mortality among patients with COVID-19, widespread inflammation, respiratory illness, and other organ failures.

Conclusion: The TECO model demonstrates a strong capability for predicting ICU mortality using continuous monitoring data. While further validation is needed, TECO has the potential to serve as a powerful early warning tool across various diseases in inpatient settings.

使用纵向住院患者电子健康记录进行临床结果预测的深度学习模型。
目的:深度学习的最新进展显示了在分析连续监测电子健康记录(EHR)数据以预测临床结果方面的巨大潜力。我们的目标是开发一种基于transformer的遭遇级临床结果(TECO)模型,利用住院患者EHR数据预测重症监护病房(ICU)的死亡率。材料和方法:采用来自2579名住院COVID-19患者的多个基线和时间相关临床变量建立TECO模型,以预测ICU死亡率,并在重症监护医学信息市场(MIMIC-IV)的急性呼吸窘迫综合征队列(n = 2799)和脓毒症队列(n = 6622)中进行外部验证。基于接收器工作特征(AUC)下的面积评估模型性能,并与Epic劣化指数(EDI)、随机森林(RF)和极端梯度提升(XGBoost)进行比较。结果:在COVID-19发展数据集中,与EDI(0.86-0.95)、RF(0.87-0.96)和XGBoost(0.88-0.96)相比,TECO在不同时间间隔内的AUC(0.89-0.97)更高。在2个MIMIC测试数据集(EDI不可用)中,TECO产生的AUC(0.65-0.77)高于RF(0.59-0.75)和XGBoost(0.59-0.74)。此外,TECO能够识别与结果相关的临床可解释特征。讨论:TECO模型在预测COVID-19、广泛炎症、呼吸系统疾病和其他器官衰竭患者的ICU死亡率方面优于专有指标和传统机器学习模型。结论:TECO模型具有较强的利用连续监测数据预测ICU死亡率的能力。虽然需要进一步验证,但TECO有潜力作为住院环境中各种疾病的强大早期预警工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信