Enhanced metabolomic predictions using concept drift analysis: identification and correction of confounding factors.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-04-04 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf073
Jana Schwarzerova, Dominika Olesova, Katerina Jureckova, Ales Kvasnicka, Ales Kostoval, David Friedecky, Jiri Sekora, Jitka Pomenkova, Valentyna Provaznik, Lubos Popelinsky, Wolfram Weckwerth
{"title":"Enhanced metabolomic predictions using concept drift analysis: identification and correction of confounding factors.","authors":"Jana Schwarzerova, Dominika Olesova, Katerina Jureckova, Ales Kvasnicka, Ales Kostoval, David Friedecky, Jiri Sekora, Jitka Pomenkova, Valentyna Provaznik, Lubos Popelinsky, Wolfram Weckwerth","doi":"10.1093/bioadv/vbaf073","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The increasing use of big data and optimized prediction methods in metabolomics requires techniques aligned with biological assumptions to improve early symptom diagnosis. One major challenge in predictive data analysis is handling confounding factors-variables influencing predictions but not directly included in the analysis.</p><p><strong>Results: </strong>Detecting and correcting confounding factors enhances prediction accuracy, reducing false negatives that contribute to diagnostic errors. This study reviews concept drift detection methods in metabolomic predictions and selects the most appropriate ones. We introduce a new implementation of concept drift analysis in predictive classifiers using metabolomics data. Known confounding factors were confirmed, validating our approach and aligning it with conventional methods. Additionally, we identified potential confounding factors that may influence biomarker analysis, which could introduce bias and impact model performance.</p><p><strong>Availability and implementation: </strong>Based on biological assumptions supported by detected concept drift, these confounding factors were incorporated into correction of prediction algorithms to enhance their accuracy. The proposed methodology has been implemented in Semi-Automated Pipeline using Concept Drift Analysis for improving Metabolomic Predictions (SAPCDAMP), an open-source workflow available at https://github.com/JanaSchwarzerova/SAPCDAMP.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf073"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037104/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The increasing use of big data and optimized prediction methods in metabolomics requires techniques aligned with biological assumptions to improve early symptom diagnosis. One major challenge in predictive data analysis is handling confounding factors-variables influencing predictions but not directly included in the analysis.

Results: Detecting and correcting confounding factors enhances prediction accuracy, reducing false negatives that contribute to diagnostic errors. This study reviews concept drift detection methods in metabolomic predictions and selects the most appropriate ones. We introduce a new implementation of concept drift analysis in predictive classifiers using metabolomics data. Known confounding factors were confirmed, validating our approach and aligning it with conventional methods. Additionally, we identified potential confounding factors that may influence biomarker analysis, which could introduce bias and impact model performance.

Availability and implementation: Based on biological assumptions supported by detected concept drift, these confounding factors were incorporated into correction of prediction algorithms to enhance their accuracy. The proposed methodology has been implemented in Semi-Automated Pipeline using Concept Drift Analysis for improving Metabolomic Predictions (SAPCDAMP), an open-source workflow available at https://github.com/JanaSchwarzerova/SAPCDAMP.

利用概念漂移分析增强代谢组学预测:混杂因素的识别和校正。
动机:代谢组学中越来越多地使用大数据和优化的预测方法,需要与生物学假设相一致的技术来改善早期症状诊断。预测数据分析的一个主要挑战是处理混杂因素——影响预测但不直接包括在分析中的变量。结果:发现和纠正混杂因素提高了预测的准确性,减少了导致诊断错误的假阴性。本研究回顾了代谢组学预测中的概念漂移检测方法,并选择了最合适的方法。我们介绍了一种利用代谢组学数据在预测分类器中实现概念漂移分析的新方法。已知的混杂因素得到确认,验证了我们的方法,并使其与传统方法一致。此外,我们确定了可能影响生物标志物分析的潜在混杂因素,这些因素可能会引入偏差并影响模型的性能。可用性和实施:基于检测到的概念漂移支持的生物学假设,将这些混杂因素纳入预测算法的校正中,以提高其准确性。所提出的方法已经在半自动管道中实现,使用概念漂移分析来改进代谢组学预测(SAPCDAMP),这是一个开源工作流程,可在https://github.com/JanaSchwarzerova/SAPCDAMP上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信