RBAD: A Dataset and Benchmark for Retinal Vessels Branching Angle Detection.

Hao Wang, Wenhui Zhu, Jiayou Qin, Xin Li, Oana Dumitrascu, Xiwen Chen, Peijie Qiu, Abolfazl Razi, Yalin Wang
{"title":"RBAD: A Dataset and Benchmark for Retinal Vessels Branching Angle Detection.","authors":"Hao Wang, Wenhui Zhu, Jiayou Qin, Xin Li, Oana Dumitrascu, Xiwen Chen, Peijie Qiu, Abolfazl Razi, Yalin Wang","doi":"10.1109/bhi62660.2024.10913865","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting retinal image analysis, particularly the geometrical features of branching points, plays an essential role in diagnosing eye diseases. However, existing methods used for this purpose often are coarse-level and lack fine-grained analysis for efficient annotation. To mitigate these issues, this paper proposes a novel method for detecting retinal branching angles using a self-configured image processing technique. Additionally, we offer an open-source annotation tool and a benchmark dataset comprising 40 images annotated with retinal branching angles. Our methodology for retinal branching angle detection and calculation is detailed, followed by a benchmark analysis comparing our method with previous approaches. The results indicate that our method is robust under various conditions with high accuracy and efficiency, which offers a valuable instrument for ophthalmic research and clinical applications. The dataset and source codes are available at https://github.com/Retinal-Research/RBAD.</p>","PeriodicalId":72024,"journal":{"name":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12068685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE-EMBS International Conference on Biomedical and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/bhi62660.2024.10913865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting retinal image analysis, particularly the geometrical features of branching points, plays an essential role in diagnosing eye diseases. However, existing methods used for this purpose often are coarse-level and lack fine-grained analysis for efficient annotation. To mitigate these issues, this paper proposes a novel method for detecting retinal branching angles using a self-configured image processing technique. Additionally, we offer an open-source annotation tool and a benchmark dataset comprising 40 images annotated with retinal branching angles. Our methodology for retinal branching angle detection and calculation is detailed, followed by a benchmark analysis comparing our method with previous approaches. The results indicate that our method is robust under various conditions with high accuracy and efficiency, which offers a valuable instrument for ophthalmic research and clinical applications. The dataset and source codes are available at https://github.com/Retinal-Research/RBAD.

RBAD:视网膜血管分支角检测的数据集和基准。
视网膜图像的检测分析,特别是分支点的几何特征,在眼科疾病的诊断中起着至关重要的作用。然而,用于此目的的现有方法通常是粗级别的,并且缺乏用于有效注释的细粒度分析。为了解决这些问题,本文提出了一种利用自配置图像处理技术检测视网膜分支角度的新方法。此外,我们还提供了一个开源的注释工具和一个包含40张带有视网膜分支角度注释的图像的基准数据集。我们的视网膜分支角检测和计算的方法是详细的,其次是基准分析比较我们的方法与以前的方法。结果表明,该方法在各种条件下均具有良好的鲁棒性,具有较高的准确度和效率,为眼科研究和临床应用提供了有价值的工具。数据集和源代码可在https://github.com/Retinal-Research/RBAD上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信