Using baseline MRI radiomic features to predict the efficacy of repetitive transcranial magnetic stimulation in Alzheimer's patients.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chandan Saha, Chase R Figley, Brian Lithgow, Xikui Wang, Paul B Fitzgerald, Lisa Koski, Behzad Mansouri, Zahra Moussavi
{"title":"Using baseline MRI radiomic features to predict the efficacy of repetitive transcranial magnetic stimulation in Alzheimer's patients.","authors":"Chandan Saha, Chase R Figley, Brian Lithgow, Xikui Wang, Paul B Fitzgerald, Lisa Koski, Behzad Mansouri, Zahra Moussavi","doi":"10.1007/s11517-025-03366-2","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of repetitive transcranial magnetic stimulation (rTMS) as a treatment for Alzheimer's disease (AD) is uncertain at baseline. Herein, we aimed to investigate whether radiomic features from the pre-treatment MRI data could predict rTMS efficacy for AD treatment. Out of 110 participants with AD in the active (n = 75) and sham (n = 35) rTMS treatment groups having T1-weighted brain MRI data, we had two groups of responders (active = 55 and sham = 24) and non-responders (active = 20 and sham = 11). We extracted histogram-based radiomic features from MRI data using 3D Slicer software; the most important features were selected utilizing a combination of a two-sample t-test, correlation test, least absolute shrinkage, and selection operator. The support vector machine classified rTMS responders and non-responders with a cross-validated mean accuracy/AUC of 81.9%/90.0% in the active group and 87.4%/95.8% in the sham group. Further, the radiomic features of the active group significantly correlated with participants' AD assessment scale-cognitive subscale (ADAS-Cog) change after treatment (false discovery rate corrected p < 0.05). Given that baseline radiomic features were able to accurately predict AD patients' responses to rTMS treatment, these radiomic features warrant further investigation for personalizing AD therapeutic strategies.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03366-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The efficacy of repetitive transcranial magnetic stimulation (rTMS) as a treatment for Alzheimer's disease (AD) is uncertain at baseline. Herein, we aimed to investigate whether radiomic features from the pre-treatment MRI data could predict rTMS efficacy for AD treatment. Out of 110 participants with AD in the active (n = 75) and sham (n = 35) rTMS treatment groups having T1-weighted brain MRI data, we had two groups of responders (active = 55 and sham = 24) and non-responders (active = 20 and sham = 11). We extracted histogram-based radiomic features from MRI data using 3D Slicer software; the most important features were selected utilizing a combination of a two-sample t-test, correlation test, least absolute shrinkage, and selection operator. The support vector machine classified rTMS responders and non-responders with a cross-validated mean accuracy/AUC of 81.9%/90.0% in the active group and 87.4%/95.8% in the sham group. Further, the radiomic features of the active group significantly correlated with participants' AD assessment scale-cognitive subscale (ADAS-Cog) change after treatment (false discovery rate corrected p < 0.05). Given that baseline radiomic features were able to accurately predict AD patients' responses to rTMS treatment, these radiomic features warrant further investigation for personalizing AD therapeutic strategies.

使用基线MRI放射学特征预测阿尔茨海默病患者重复经颅磁刺激的疗效。
重复经颅磁刺激(rTMS)作为治疗阿尔茨海默病(AD)的疗效在基线时尚不确定。在此,我们旨在研究治疗前MRI数据的放射学特征是否可以预测rTMS治疗AD的疗效。在有t1加权脑MRI数据的活跃(n = 75)和假手术(n = 35) rTMS治疗组的110名AD患者中,我们有两组反应者(活跃= 55,假手术= 24)和无反应者(活跃= 20,假手术= 11)。我们使用3D Slicer软件从MRI数据中提取基于直方图的放射学特征;利用两样本t检验、相关检验、最小绝对收缩和选择算子的组合来选择最重要的特征。支持向量机对rTMS应答者和无应答者进行分类,交叉验证的平均准确率/AUC在活动组为81.9%/90.0%,在假手术组为87.4%/95.8%。此外,活性组的放射学特征与治疗后AD评估量表-认知子量表(ADAS-Cog)的变化显著相关(错误发现率校正p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信