{"title":"Multi-modal machine learning approach for early detection of neurodegenerative diseases leveraging brain MRI and wearable sensor data.","authors":"Andrew Li, Jie Lian, Varut Vardhanabhuti","doi":"10.1371/journal.pdig.0000795","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, such as Alzheimer's and Parkinson's Disease, pose a significant healthcare burden to the aging population. Structural MRI brain parameters and accelerometry data from wearable devices have been proven to be useful predictors for these diseases but have been separately examined in the prior literature. This study aims to determine whether a combination of accelerometry data and MRI brain parameters may improve the detection and prognostication of Alzheimer's and Parkinson's disease, compared with MRI brain parameters alone. A cohort of 19,793 participants free of neurodegenerative disease at the time of imaging and accelerometry data capture from the UK Biobank with longitudinal follow-up was derived to test this hypothesis. Relevant structural MRI brain parameters, accelerometry data collected from wearable devices, standard polygenic risk scores and lifestyle information were obtained. Subsequent development of neurodegenerative diseases among participants was recorded (mean follow-up time of 5.9 years), with positive cases defined as those diagnosed at least one year after imaging. A machine learning algorithm (XGBoost) was employed to create prediction models for the development of neurodegenerative disease. A prediction model consisting of all factors, including structural MRI brain parameters, accelerometry data, PRS, and lifestyle information, achieved the highest AUC value (0.819) out of all tested models. A model that excluded MRI brain parameters achieved the lowest AUC value (0.688). Feature importance analyses revealed 18 out of 20 most important features were structural MRI brain parameters, while 2 were derived from accelerometry data. Our study demonstrates the potential utility of combining structural MRI brain parameters with accelerometry data from wearable devices to predict the incidence of neurodegenerative diseases. Future prospective studies across different populations should be conducted to confirm these study results and look for differences in predictive ability for various types of neurodegenerative diseases.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 4","pages":"e0000795"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027105/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases, such as Alzheimer's and Parkinson's Disease, pose a significant healthcare burden to the aging population. Structural MRI brain parameters and accelerometry data from wearable devices have been proven to be useful predictors for these diseases but have been separately examined in the prior literature. This study aims to determine whether a combination of accelerometry data and MRI brain parameters may improve the detection and prognostication of Alzheimer's and Parkinson's disease, compared with MRI brain parameters alone. A cohort of 19,793 participants free of neurodegenerative disease at the time of imaging and accelerometry data capture from the UK Biobank with longitudinal follow-up was derived to test this hypothesis. Relevant structural MRI brain parameters, accelerometry data collected from wearable devices, standard polygenic risk scores and lifestyle information were obtained. Subsequent development of neurodegenerative diseases among participants was recorded (mean follow-up time of 5.9 years), with positive cases defined as those diagnosed at least one year after imaging. A machine learning algorithm (XGBoost) was employed to create prediction models for the development of neurodegenerative disease. A prediction model consisting of all factors, including structural MRI brain parameters, accelerometry data, PRS, and lifestyle information, achieved the highest AUC value (0.819) out of all tested models. A model that excluded MRI brain parameters achieved the lowest AUC value (0.688). Feature importance analyses revealed 18 out of 20 most important features were structural MRI brain parameters, while 2 were derived from accelerometry data. Our study demonstrates the potential utility of combining structural MRI brain parameters with accelerometry data from wearable devices to predict the incidence of neurodegenerative diseases. Future prospective studies across different populations should be conducted to confirm these study results and look for differences in predictive ability for various types of neurodegenerative diseases.