Black-box Optimization of CT Acquisition and Reconstruction Parameters: A Reinforcement Learning Approach.

David Fenwick, Navid NaderiAlizadeh, Vahid Tarokh, Darin Clark, Jayasai Rajagopal, Anuj Kapadia, Nicholas Felice, Ehsan Samei, Ehsan Abadi
{"title":"Black-box Optimization of CT Acquisition and Reconstruction Parameters: A Reinforcement Learning Approach.","authors":"David Fenwick, Navid NaderiAlizadeh, Vahid Tarokh, Darin Clark, Jayasai Rajagopal, Anuj Kapadia, Nicholas Felice, Ehsan Samei, Ehsan Abadi","doi":"10.1117/12.3046807","DOIUrl":null,"url":null,"abstract":"<p><p>Protocol optimization is critical in Computed Tomography (CT) for achieving desired diagnostic image quality while minimizing radiation dose. Due to the inter-effect of influencing CT parameters, traditional optimization methods rely on the testing of exhaustive combinations of these parameters. This poses a notable limitation due to the impracticality of exhaustive parameter testing. This study introduces a novel methodology leveraging Virtual Imaging Trials (VITs) and reinforcement learning to more efficiently optimize CT protocols. Computational phantoms with liver lesions were imaged using a validated CT simulator and reconstructed with a novel CT reconstruction Toolkit. The optimization parameter space included tube voltage, tube current, reconstruction kernel, slice thickness, and pixel size. The optimization process was done using a Proximal Policy Optimization (PPO) agent which was trained to maximize the Detectability Index (d') of the liver lesion for each reconstructed image. Results showed that our reinforcement learning approach found the absolute maximum d' across the test cases while requiring 79.7% fewer steps compared to an exhaustive search, demonstrating both accuracy and computational efficiency, offering a efficient and robust framework for CT protocol optimization. The flexibility of the proposed technique allows for use of varying image quality metrics as the objective metric to maximize for. Our findings highlight the advantages of combining VIT and reinforcement learning for CT protocol management.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13405 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3046807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protocol optimization is critical in Computed Tomography (CT) for achieving desired diagnostic image quality while minimizing radiation dose. Due to the inter-effect of influencing CT parameters, traditional optimization methods rely on the testing of exhaustive combinations of these parameters. This poses a notable limitation due to the impracticality of exhaustive parameter testing. This study introduces a novel methodology leveraging Virtual Imaging Trials (VITs) and reinforcement learning to more efficiently optimize CT protocols. Computational phantoms with liver lesions were imaged using a validated CT simulator and reconstructed with a novel CT reconstruction Toolkit. The optimization parameter space included tube voltage, tube current, reconstruction kernel, slice thickness, and pixel size. The optimization process was done using a Proximal Policy Optimization (PPO) agent which was trained to maximize the Detectability Index (d') of the liver lesion for each reconstructed image. Results showed that our reinforcement learning approach found the absolute maximum d' across the test cases while requiring 79.7% fewer steps compared to an exhaustive search, demonstrating both accuracy and computational efficiency, offering a efficient and robust framework for CT protocol optimization. The flexibility of the proposed technique allows for use of varying image quality metrics as the objective metric to maximize for. Our findings highlight the advantages of combining VIT and reinforcement learning for CT protocol management.

CT采集和重建参数的黑盒优化:一种强化学习方法。
在计算机断层扫描(CT)中,方案优化是实现所需诊断图像质量同时最小化辐射剂量的关键。由于影响连续油管参数的相互作用,传统的优化方法依赖于这些参数的穷举组合测试。由于穷举参数测试的不实用性,这造成了明显的限制。本研究介绍了一种利用虚拟成像试验(VITs)和强化学习的新方法,以更有效地优化CT协议。使用经过验证的CT模拟器对肝脏病变的计算幻影进行成像,并使用新的CT重建工具包进行重建。优化参数空间包括管电压、管电流、重构核、切片厚度和像素大小。优化过程使用近端策略优化(PPO)代理完成,该代理被训练为最大化每个重建图像的肝脏病变的可检测指数(d')。结果表明,我们的强化学习方法在测试用例中找到了绝对最大的d',而与穷举搜索相比,所需的步骤减少了79.7%,证明了准确性和计算效率,为CT协议优化提供了高效且稳健的框架。所提出的技术的灵活性允许使用不同的图像质量度量作为客观度量来最大化。我们的研究结果强调了将VIT和强化学习相结合用于CT协议管理的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信