{"title":"Dynamics and Bifurcation Structure of a Mean-Field Model of Adaptive Exponential Integrate-and-Fire Networks","authors":"Lionel Kusch;Damien Depannemaecker;Alain Destexhe;Viktor Jirsa","doi":"10.1162/neco_a_01758","DOIUrl":null,"url":null,"abstract":"The study of brain activity spans diverse scales and levels of description and requires the development of computational models alongside experimental investigations to explore integrations across scales. The high dimensionality of spiking networks presents challenges for understanding their dynamics. To tackle this, a mean-field formulation offers a potential approach for dimensionality reduction while retaining essential elements. Here, we focus on a previously developed mean-field model of adaptive exponential integrate and fire (AdEx) networks used in various research work. We observe qualitative similarities in the bifurcation structure but quantitative differences in mean firing rates between the mean-field model and AdEx spiking network simulations. Even if the mean-field model does not accurately predict phase shift during transients and oscillatory input, it generally captures the qualitative dynamics of the spiking network’s response to both constant and varying inputs. Finally, we offer an overview of the dynamical properties of the AdExMF to assist future users in interpreting their results of simulations.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"37 6","pages":"1102-1123"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11009215/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The study of brain activity spans diverse scales and levels of description and requires the development of computational models alongside experimental investigations to explore integrations across scales. The high dimensionality of spiking networks presents challenges for understanding their dynamics. To tackle this, a mean-field formulation offers a potential approach for dimensionality reduction while retaining essential elements. Here, we focus on a previously developed mean-field model of adaptive exponential integrate and fire (AdEx) networks used in various research work. We observe qualitative similarities in the bifurcation structure but quantitative differences in mean firing rates between the mean-field model and AdEx spiking network simulations. Even if the mean-field model does not accurately predict phase shift during transients and oscillatory input, it generally captures the qualitative dynamics of the spiking network’s response to both constant and varying inputs. Finally, we offer an overview of the dynamical properties of the AdExMF to assist future users in interpreting their results of simulations.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.