Frequency-difference sparse Bayesian learning for unambiguous direction-of-arrival estimation.

IF 1.4 Q3 ACOUSTICS
Ze Yuan, Haiqiang Niu, Zhenglin Li, Wenyu Luo
{"title":"Frequency-difference sparse Bayesian learning for unambiguous direction-of-arrival estimation.","authors":"Ze Yuan, Haiqiang Niu, Zhenglin Li, Wenyu Luo","doi":"10.1121/10.0036752","DOIUrl":null,"url":null,"abstract":"<p><p>The frequency-difference (FD) method uses the FD Hadamard product, comprising auto-products to model below-band acoustic fields and unintended cross-products, for efficient direction-of-arrival (DOA) estimation under spatial aliasing. Despite improved resolution from compressive sensing, spurious peaks arise as a result of cross-products lacking counterparts in the sensing matrix. The proposed method addresses this by reconstructing the sensing matrix with the full Hadamard product and applying sparse Bayesian learning to estimate a two-dimensional hyperparameter matrix, extracting its diagonal to suppress spurious DOAs. Simulations show that it outperforms previous compressive FD methods in detecting weak targets, where advantages increase as source numbers grow.</p>","PeriodicalId":73538,"journal":{"name":"JASA express letters","volume":"5 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JASA express letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/10.0036752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The frequency-difference (FD) method uses the FD Hadamard product, comprising auto-products to model below-band acoustic fields and unintended cross-products, for efficient direction-of-arrival (DOA) estimation under spatial aliasing. Despite improved resolution from compressive sensing, spurious peaks arise as a result of cross-products lacking counterparts in the sensing matrix. The proposed method addresses this by reconstructing the sensing matrix with the full Hadamard product and applying sparse Bayesian learning to estimate a two-dimensional hyperparameter matrix, extracting its diagonal to suppress spurious DOAs. Simulations show that it outperforms previous compressive FD methods in detecting weak targets, where advantages increase as source numbers grow.

无二义到达方向估计的频差稀疏贝叶斯学习。
频差(FD)方法使用FD Hadamard积,包括自动积来模拟带下声场和非预期交叉积,从而在空间混叠下有效地估计到达方向(DOA)。尽管压缩感知提高了分辨率,但由于感知矩阵中缺乏对偶的交叉乘积,产生了杂散峰。该方法利用全Hadamard积重构感知矩阵,并应用稀疏贝叶斯学习估计二维超参数矩阵,提取其对角线以抑制伪doa。仿真结果表明,该方法在检测弱目标方面优于以往的压缩FD方法,其优势随着源数的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信