{"title":"A Patient with Organic Acidemia, Hyperammonemia, and a <i>FBXL4</i> Variant Suggesting Mitochondrial DNA Depletion Syndrome.","authors":"Merve Keser, Büşra Demirci, Habibe Koç Uçar, Özlem Akgün, İlknur Arslan, Berrak Bilginer Gürbüz","doi":"10.1159/000545585","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mitochondrial DNA depletion syndromes encompass rare genetic disorders stemming from various gene defects, including encephalomyopathic mtDNA depletion syndrome 13 (MTDPS13), an autosomal recessive condition linked to <i>FBXL4</i> gene variants. Although its prevalence is estimated at 1/100,000-400,000, the mechanism behind MTDPS13 remains incompletely understood. Recent studies suggest <i>FBXL4</i> variants disrupt mitophagy, contributing to its pathogenesis.</p><p><strong>Case presentation: </strong>A 3-year and 4-month-old male presented with respiratory distress, diarrhea, and unconsciousness. His medical history revealed developmental delay and dysmorphic features. Physical examination unveiled characteristic dysmorphisms, while neurological assessment indicated abnormalities. Laboratory findings exhibited metabolic disturbances consistent with MTDPS13, confirmed by genetic analysis revealing a homozygous c.1555C>T <i>FBXL4</i> variant.</p><p><strong>Conclusion: </strong>FBXL4 defects, found in approximately 0.7% of suspected mitochondrial disease cases, lead to varied phenotypes with nonspecific facial dysmorphisms. The patient's presentation aligned with reported features, including growth delay, hypotonia, and developmental delay. Notably, the diagnosis occurred later than typical onset, highlighting the variability in disease manifestation. Treatment focused on symptom management, with dichloroacetic acid effectively addressing lactic acidosis. This case underscores the importance of considering mitochondrial diseases, particularly FBXL4-related MTDPS13, in patients presenting with metabolic disturbances and dysmorphic features. Early recognition facilitates appropriate management and genetic counseling for affected families.</p>","PeriodicalId":48566,"journal":{"name":"Molecular Syndromology","volume":" ","pages":"1-7"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Syndromology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000545585","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Mitochondrial DNA depletion syndromes encompass rare genetic disorders stemming from various gene defects, including encephalomyopathic mtDNA depletion syndrome 13 (MTDPS13), an autosomal recessive condition linked to FBXL4 gene variants. Although its prevalence is estimated at 1/100,000-400,000, the mechanism behind MTDPS13 remains incompletely understood. Recent studies suggest FBXL4 variants disrupt mitophagy, contributing to its pathogenesis.
Case presentation: A 3-year and 4-month-old male presented with respiratory distress, diarrhea, and unconsciousness. His medical history revealed developmental delay and dysmorphic features. Physical examination unveiled characteristic dysmorphisms, while neurological assessment indicated abnormalities. Laboratory findings exhibited metabolic disturbances consistent with MTDPS13, confirmed by genetic analysis revealing a homozygous c.1555C>T FBXL4 variant.
Conclusion: FBXL4 defects, found in approximately 0.7% of suspected mitochondrial disease cases, lead to varied phenotypes with nonspecific facial dysmorphisms. The patient's presentation aligned with reported features, including growth delay, hypotonia, and developmental delay. Notably, the diagnosis occurred later than typical onset, highlighting the variability in disease manifestation. Treatment focused on symptom management, with dichloroacetic acid effectively addressing lactic acidosis. This case underscores the importance of considering mitochondrial diseases, particularly FBXL4-related MTDPS13, in patients presenting with metabolic disturbances and dysmorphic features. Early recognition facilitates appropriate management and genetic counseling for affected families.
期刊介绍:
''Molecular Syndromology'' publishes high-quality research articles, short reports and reviews on common and rare genetic syndromes, aiming to increase clinical understanding through molecular insights. Topics of particular interest are the molecular basis of genetic syndromes, genotype-phenotype correlation, natural history, strategies in disease management and novel therapeutic approaches based on molecular findings. Research on model systems is also welcome, especially when it is obviously relevant to human genetics. With high-quality reviews on current topics the journal aims to facilitate translation of research findings to a clinical setting while also stimulating further research on clinically relevant questions. The journal targets not only medical geneticists and basic biomedical researchers, but also clinicians dealing with genetic syndromes. With four Associate Editors from three continents and a broad international Editorial Board the journal welcomes submissions covering the latest research from around the world.