AlphaMissenseR: an integrated framework for investigating missense mutations in human protein-coding genes.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-04-23 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf093
Tram N Nguyen, Tyrone Lee, Nitesh Turaga, Robert Gentleman, Ludwig Geistlinger, Martin Morgan
{"title":"AlphaMissenseR: an integrated framework for investigating missense mutations in human protein-coding genes.","authors":"Tram N Nguyen, Tyrone Lee, Nitesh Turaga, Robert Gentleman, Ludwig Geistlinger, Martin Morgan","doi":"10.1093/bioadv/vbaf093","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>AlphaMissense is an AI model from Google DeepMind that predicts the pathogenicity of every possible missense mutation in the human proteome. We present AlphaMissenseR, an R/Bioconductor package that facilitates performant and reproducible access to these predictions and that provides functionality for analysis, visualization, validation, and benchmarking. AlphaMissenseR integrates with Bioconductor facilities for genomic region analysis, and provides multi-level visualization and interactive exploration of variant pathogenicity in a genome browser and on 3D protein structures. In addition, AlphaMissenseR integrates with major clinical and experimental variant databases for contrasting predicted and clinically derived pathogenicity scores, and for systematic benchmarking of existing and new variant effect prediction methods across a large collection of deep mutational scanning assays.</p><p><strong>Availability and implementation: </strong>AlphaMissense data resources are distributed under the CC-BY 4.0 license and the AlphaMissenseR package is available from Bioconductor (https://bioconductor.org/packages/AlphaMissenseR) under the Artistic 2.0 license.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf093"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040380/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: AlphaMissense is an AI model from Google DeepMind that predicts the pathogenicity of every possible missense mutation in the human proteome. We present AlphaMissenseR, an R/Bioconductor package that facilitates performant and reproducible access to these predictions and that provides functionality for analysis, visualization, validation, and benchmarking. AlphaMissenseR integrates with Bioconductor facilities for genomic region analysis, and provides multi-level visualization and interactive exploration of variant pathogenicity in a genome browser and on 3D protein structures. In addition, AlphaMissenseR integrates with major clinical and experimental variant databases for contrasting predicted and clinically derived pathogenicity scores, and for systematic benchmarking of existing and new variant effect prediction methods across a large collection of deep mutational scanning assays.

Availability and implementation: AlphaMissense data resources are distributed under the CC-BY 4.0 license and the AlphaMissenseR package is available from Bioconductor (https://bioconductor.org/packages/AlphaMissenseR) under the Artistic 2.0 license.

AlphaMissenseR:一个研究人类蛋白质编码基因错义突变的综合框架。
摘要:AlphaMissense是谷歌DeepMind的一个人工智能模型,可以预测人类蛋白质组中每一个可能的错义突变的致病性。我们介绍了AlphaMissenseR,这是一个R/Bioconductor包,它促进了对这些预测的高性能和可重复访问,并提供了分析、可视化、验证和基准测试的功能。AlphaMissenseR集成了Bioconductor的基因组区域分析设施,并在基因组浏览器和3D蛋白质结构中提供了变异致病性的多层次可视化和交互式探索。此外,AlphaMissenseR集成了主要的临床和实验变异数据库,用于对比预测和临床衍生的致病性评分,并在大量深度突变扫描分析中对现有和新的变异效应预测方法进行系统的基准测试。可用性和实现:AlphaMissense数据资源在CC-BY 4.0许可下分发,AlphaMissenseR包根据art 2.0许可从Bioconductor (https://bioconductor.org/packages/AlphaMissenseR)获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信