{"title":"Improvement of polygenic modeling of blood pressure traits using lifestyle information in the UK Biobank.","authors":"Francesco Tiezzi, Khushi Goda, Fabio Morgante","doi":"10.1093/genetics/iyaf089","DOIUrl":null,"url":null,"abstract":"<p><p>Complex traits are determined by the effects of multiple genetic variants, multiple environmental factors, and potentially their interaction. Predicting complex trait phenotypes from genotypes is a fundamental task in quantitative genetics that was pioneered in agricultural breeding for selection purposes. However, it has recently become important in human genetics. While prediction accuracy for some human complex traits is appreciable, this remains low for most traits. A promising way to improve prediction accuracy is by including not only genetic information but also environmental information in prediction models. However, environmental factors can, in turn, be genetically determined. This phenomenon gives rise to collinearity between the genetic and environmental components of the phenotype, which violates the assumptions of most statistical methods for polygenic modeling (i.e., environmental factors are non-randomized over the genetic factors). This phenomenon is also known as \"reverse causation\", and could lead to biased predictions due to the difficulty in disentangling the genetic and environmental effects. In this work, we investigated the impact of including 27 lifestyle variables as well as genotype information (and their interaction) for predicting diastolic blood pressure, systolic blood pressure, and pulse pressure in older individuals in UK Biobank. The 27 lifestyle variables were included as either raw variables or adjusted for genetic and other non-genetic factors. The results show that proper adjustment of the lifestyle variables allows for improved model performance and reduces the bias generated by reverse causation. Our work confirms the utility of including environmental information in polygenic models of complex traits and highlights the importance of proper handling of the environmental variables.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf089","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Complex traits are determined by the effects of multiple genetic variants, multiple environmental factors, and potentially their interaction. Predicting complex trait phenotypes from genotypes is a fundamental task in quantitative genetics that was pioneered in agricultural breeding for selection purposes. However, it has recently become important in human genetics. While prediction accuracy for some human complex traits is appreciable, this remains low for most traits. A promising way to improve prediction accuracy is by including not only genetic information but also environmental information in prediction models. However, environmental factors can, in turn, be genetically determined. This phenomenon gives rise to collinearity between the genetic and environmental components of the phenotype, which violates the assumptions of most statistical methods for polygenic modeling (i.e., environmental factors are non-randomized over the genetic factors). This phenomenon is also known as "reverse causation", and could lead to biased predictions due to the difficulty in disentangling the genetic and environmental effects. In this work, we investigated the impact of including 27 lifestyle variables as well as genotype information (and their interaction) for predicting diastolic blood pressure, systolic blood pressure, and pulse pressure in older individuals in UK Biobank. The 27 lifestyle variables were included as either raw variables or adjusted for genetic and other non-genetic factors. The results show that proper adjustment of the lifestyle variables allows for improved model performance and reduces the bias generated by reverse causation. Our work confirms the utility of including environmental information in polygenic models of complex traits and highlights the importance of proper handling of the environmental variables.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.