Study duration prediction for clinical trials with time-to-event endpoints accounting for heterogeneous population.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Hong Zhang, Jie Pu, Shibing Deng, Satrajit Roychoudhury, Haitao Chu, Douglas Robinson
{"title":"Study duration prediction for clinical trials with time-to-event endpoints accounting for heterogeneous population.","authors":"Hong Zhang, Jie Pu, Shibing Deng, Satrajit Roychoudhury, Haitao Chu, Douglas Robinson","doi":"10.1080/10543406.2025.2489294","DOIUrl":null,"url":null,"abstract":"<p><p>In the era of precision medicine, more and more clinical trials are now driven or guided by biomarkers, which are patient characteristics objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to therapeutic interventions. With the overarching objective to optimize and personalize disease management, biomarker-guided clinical trials increase the efficiency by appropriately utilizing prognostic or predictive biomarkers in the design. However, the efficiency gain is often not quantitatively compared to the traditional all-comers design, in which a faster enrollment rate is expected (e.g. due to no restriction to biomarker positive patients) potentially leading to a shorter duration. To accurately predict biomarker-guided trial duration, we propose a general framework using mixture distributions accounting for heterogeneous population. Extensive simulations are performed to evaluate the impact of heterogeneous population and the dynamics of biomarker characteristics and disease on the study duration. Several influential parameters including median survival time, enrollment rate, biomarker prevalence and effect size are identified. Re-assessments of two publicly available trials are conducted to empirically validate the prediction accuracy and to demonstrate the practical utility.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-16"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2489294","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of precision medicine, more and more clinical trials are now driven or guided by biomarkers, which are patient characteristics objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to therapeutic interventions. With the overarching objective to optimize and personalize disease management, biomarker-guided clinical trials increase the efficiency by appropriately utilizing prognostic or predictive biomarkers in the design. However, the efficiency gain is often not quantitatively compared to the traditional all-comers design, in which a faster enrollment rate is expected (e.g. due to no restriction to biomarker positive patients) potentially leading to a shorter duration. To accurately predict biomarker-guided trial duration, we propose a general framework using mixture distributions accounting for heterogeneous population. Extensive simulations are performed to evaluate the impact of heterogeneous population and the dynamics of biomarker characteristics and disease on the study duration. Several influential parameters including median survival time, enrollment rate, biomarker prevalence and effect size are identified. Re-assessments of two publicly available trials are conducted to empirically validate the prediction accuracy and to demonstrate the practical utility.

考虑异质人群的临床试验的研究持续时间预测。
在精准医疗时代,越来越多的临床试验以生物标志物为驱动或指导,生物标志物是客观测量和评价的患者特征,作为正常生物过程、致病过程或对治疗干预的药理学反应的指标。以优化和个性化疾病管理为首要目标,生物标志物引导的临床试验通过在设计中适当利用预后或预测性生物标志物来提高效率。然而,与传统的所有患者设计相比,效率的提高往往无法定量,在传统的设计中,预期更快的入组率(例如,由于对生物标志物阳性患者没有限制)可能导致更短的持续时间。为了准确预测生物标志物引导的试验持续时间,我们提出了一个使用混合分布的通用框架,该框架考虑了异质人群。进行了广泛的模拟,以评估异质种群和生物标志物特征和疾病动态对研究持续时间的影响。确定了几个有影响的参数,包括中位生存时间、入组率、生物标志物患病率和效应大小。对两个公开可用的试验进行了重新评估,以经验验证预测的准确性,并证明了实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信