Hong Zhang, Jie Pu, Shibing Deng, Satrajit Roychoudhury, Haitao Chu, Douglas Robinson
{"title":"Study duration prediction for clinical trials with time-to-event endpoints accounting for heterogeneous population.","authors":"Hong Zhang, Jie Pu, Shibing Deng, Satrajit Roychoudhury, Haitao Chu, Douglas Robinson","doi":"10.1080/10543406.2025.2489294","DOIUrl":null,"url":null,"abstract":"<p><p>In the era of precision medicine, more and more clinical trials are now driven or guided by biomarkers, which are patient characteristics objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to therapeutic interventions. With the overarching objective to optimize and personalize disease management, biomarker-guided clinical trials increase the efficiency by appropriately utilizing prognostic or predictive biomarkers in the design. However, the efficiency gain is often not quantitatively compared to the traditional all-comers design, in which a faster enrollment rate is expected (e.g. due to no restriction to biomarker positive patients) potentially leading to a shorter duration. To accurately predict biomarker-guided trial duration, we propose a general framework using mixture distributions accounting for heterogeneous population. Extensive simulations are performed to evaluate the impact of heterogeneous population and the dynamics of biomarker characteristics and disease on the study duration. Several influential parameters including median survival time, enrollment rate, biomarker prevalence and effect size are identified. Re-assessments of two publicly available trials are conducted to empirically validate the prediction accuracy and to demonstrate the practical utility.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-16"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2489294","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In the era of precision medicine, more and more clinical trials are now driven or guided by biomarkers, which are patient characteristics objectively measured and evaluated as indicators of normal biological processes, pathogenic processes, or pharmacologic responses to therapeutic interventions. With the overarching objective to optimize and personalize disease management, biomarker-guided clinical trials increase the efficiency by appropriately utilizing prognostic or predictive biomarkers in the design. However, the efficiency gain is often not quantitatively compared to the traditional all-comers design, in which a faster enrollment rate is expected (e.g. due to no restriction to biomarker positive patients) potentially leading to a shorter duration. To accurately predict biomarker-guided trial duration, we propose a general framework using mixture distributions accounting for heterogeneous population. Extensive simulations are performed to evaluate the impact of heterogeneous population and the dynamics of biomarker characteristics and disease on the study duration. Several influential parameters including median survival time, enrollment rate, biomarker prevalence and effect size are identified. Re-assessments of two publicly available trials are conducted to empirically validate the prediction accuracy and to demonstrate the practical utility.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.