Muhammed Fikret Yalcinbas, Cengizhan Ozturk, Onur Ozyurt, Uzay E Emir, Ulas Bagci
{"title":"Rosette Trajectory MRI Reconstruction with Vision Transformers.","authors":"Muhammed Fikret Yalcinbas, Cengizhan Ozturk, Onur Ozyurt, Uzay E Emir, Ulas Bagci","doi":"10.3390/tomography11040041","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>An efficient pipeline for rosette trajectory magnetic resonance imaging reconstruction is proposed, combining the inverse Fourier transform with a vision transformer (ViT) network enhanced with a convolutional layer. This method addresses the challenges of reconstructing high-quality images from non-Cartesian data by leveraging the ViT's ability to handle complex spatial dependencies without extensive preprocessing.</p><p><strong>Materials and methods: </strong>The inverse fast Fourier transform provides a robust initial approximation, which is refined by the ViT network to produce high-fidelity images.</p><p><strong>Results and discussion: </strong>This approach outperforms established deep learning techniques for normalized root mean squared error, peak signal-to-noise ratio, and entropy-based image quality scores; offers better runtime performance; and remains competitive with respect to other metrics.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031261/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11040041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: An efficient pipeline for rosette trajectory magnetic resonance imaging reconstruction is proposed, combining the inverse Fourier transform with a vision transformer (ViT) network enhanced with a convolutional layer. This method addresses the challenges of reconstructing high-quality images from non-Cartesian data by leveraging the ViT's ability to handle complex spatial dependencies without extensive preprocessing.
Materials and methods: The inverse fast Fourier transform provides a robust initial approximation, which is refined by the ViT network to produce high-fidelity images.
Results and discussion: This approach outperforms established deep learning techniques for normalized root mean squared error, peak signal-to-noise ratio, and entropy-based image quality scores; offers better runtime performance; and remains competitive with respect to other metrics.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.