{"title":"Permeable Lung Vasculature Creates Chemoresistant Endothelial Niche by Producing SERPINE1 at Breast Cancer Metastatic Sites","authors":"Tsunaki Hongu, Sarenqiqige, Shandan, Hirokazu Kusunoki, Akihiko Ishimura, Takeshi Suzuki, Thordur Oskarsson, Noriko Gotoh","doi":"10.1111/cas.70050","DOIUrl":null,"url":null,"abstract":"<p>Chemotherapy resistance remains a major obstacle for eradicating metastatic cancer cells in distant organs. We identified that endothelial cells (ECs) in the lungs, where breast cancer cells often metastasize, form a chemoresistant perivascular niche for disseminated breast cancer cells. By investigating the lung EC secretome activated by metastasis, we found that serine protease inhibitor family E member 1 (SERPINE1), encoded by <i>Serpine1</i>, is upregulated in metastasis-associated lung ECs. This upregulation shields cancer cells from paclitaxel-induced apoptosis and promotes cancer stem cell properties. <i>Serpine1</i> expression appears to be driven by YAP-TEAD activation in lung ECs that lose cell–cell contact, a phenomenon associated with increased vascular permeability in lungs affected by metastasis. Crucially, pharmacological inhibition of SERPINE1 enhances the chemotherapy sensitivity of metastatic breast cancer cells in the lung. Overall, our findings underscore the pivotal role of the vascular niche, which produces SERPINE1, in conferring chemoresistance to breast cancer cells during metastatic progression in the lungs.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"116 6","pages":"1604-1615"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.70050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.70050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemotherapy resistance remains a major obstacle for eradicating metastatic cancer cells in distant organs. We identified that endothelial cells (ECs) in the lungs, where breast cancer cells often metastasize, form a chemoresistant perivascular niche for disseminated breast cancer cells. By investigating the lung EC secretome activated by metastasis, we found that serine protease inhibitor family E member 1 (SERPINE1), encoded by Serpine1, is upregulated in metastasis-associated lung ECs. This upregulation shields cancer cells from paclitaxel-induced apoptosis and promotes cancer stem cell properties. Serpine1 expression appears to be driven by YAP-TEAD activation in lung ECs that lose cell–cell contact, a phenomenon associated with increased vascular permeability in lungs affected by metastasis. Crucially, pharmacological inhibition of SERPINE1 enhances the chemotherapy sensitivity of metastatic breast cancer cells in the lung. Overall, our findings underscore the pivotal role of the vascular niche, which produces SERPINE1, in conferring chemoresistance to breast cancer cells during metastatic progression in the lungs.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.