Evaluating the performance of a resampling approach for internally validating the association between a time-dependent binary indicator and time-to-event outcome.
{"title":"Evaluating the performance of a resampling approach for internally validating the association between a time-dependent binary indicator and time-to-event outcome.","authors":"Caroline A Falvey, Jamie L Todd, Megan L Neely","doi":"10.1080/10543406.2025.2489293","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying clinical or biological risk factors for disease plays a critical role in enabling earlier disease diagnosis, prognostic outcomes assessment, and may inform disease prevention or monitoring practices. One framework commonly examined is understanding the association between a risk factor ever occurring in follow-up and the future risk of an outcome. If such an association is found, researchers are often asked to validate the finding. External validation is often infeasible, and validation may only be performed internally. However, the performance of internal validation methods in the setting of a time-dependent binary indicator and a time-to-event outcome has not been well-studied. We emulated a dataset motivated by real-world serial biomarker observations and performed extensive simulation studies to evaluate the performance of a resampling-based method to internally validate the association between a time-dependent binary indicator and a time-to-event outcome. We found the resampling-based method achieved optimal power for validating such an association while maintaining good Type I error control.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-11"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2489293","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying clinical or biological risk factors for disease plays a critical role in enabling earlier disease diagnosis, prognostic outcomes assessment, and may inform disease prevention or monitoring practices. One framework commonly examined is understanding the association between a risk factor ever occurring in follow-up and the future risk of an outcome. If such an association is found, researchers are often asked to validate the finding. External validation is often infeasible, and validation may only be performed internally. However, the performance of internal validation methods in the setting of a time-dependent binary indicator and a time-to-event outcome has not been well-studied. We emulated a dataset motivated by real-world serial biomarker observations and performed extensive simulation studies to evaluate the performance of a resampling-based method to internally validate the association between a time-dependent binary indicator and a time-to-event outcome. We found the resampling-based method achieved optimal power for validating such an association while maintaining good Type I error control.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.