{"title":"[Clinical manifestations and genetic analysis of two patients with familial hypercholesterolemia caused by complex heterozygous variants].","authors":"Xiang Lian, Xiaoyan Li, Kexin Wang, Chunying Tian, Zixi Liu, Xifu Wang","doi":"10.3760/cma.j.cn511374-20241026-00562","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the gene detection results of 2 patients with familial hypercholesterolemia (FH) caused by complex heterozygous variation, and to clarify the relationship between clinical manifestations and gene variation.</p><p><strong>Methods: </strong>Two patients (patient 1 and 2) with FH who visited Beijing Anzhen Hospital Affiliated to Capital Medical University in 2018 were selected as research subjects. A retrospective study method was used to collect clinical and family history data of the two patients. And 2 mL of peripheral venous blood from each of the two patients was collected, and genomic DNA extraction was performed on the blood samples. Sanger sequencing was used to validate the variant sites of the two patients detected by whole-exome sequencing (WES). Pathogenicity of variants was classified based on the American College of Medical Genetics and Genomics (ACMG) Standards and Guidelines for the Classification of Genetic Variants (hereinafter referred to as the \"ACMG Guidelines\"), and the impact of variant was analyzed using multiple bioinformatics tools including SIFT, PolyPhen-2, and SWISS-MODEL. This study has been approved by Beijing Anzhen Hospital Affiliated to Capital Medical University (Ethics No. 2024215X).</p><p><strong>Results: </strong>Patient 1 initially presented with early-onset coronary heart disease, with initial lipid levels of serum total cholesterol (TC) 9.86 mmol/L (normal reference value: 3.10~5.20 mmol/L) and serum low-density lipoprotein cholesterol (LDL-C) 8.37 mmol/L (normal reference value: 1.27~3.12 mmol/L) on admission. Patient 1 initially underwent treatment with rosuvastatin combined with ezetimibe for one month, but the lipid-lowering effect was not significant. The lipid-lowering therapy was then adjusted to atorvastatin combined with ezetimibe and probucol. After one year of treatment, the patient developed paroxysmal chest pain symptoms. A follow-up lipid profile showed a serum TC level of 4.50 mmol/L and a LDL-C level of 3.55 mmol/L. The lipid-lowering regimen was continued, and the serum LDL-C levels were maintained between 2.65 and 3.66 mmol/L. Patient 2 was found to have an abnormally high blood lipid level and carotid artery hardening during physical examination, with an initial blood lipid level of serum TC 11.82 mmol/L and serum LDL-C 9.63 mmol/L. After receiving rosuvastatain therapy, the lipid-lowering effect was significant. WES revealed that patient 1 carried the heterozygous variants c.1871_1873del(p.Ile624del) and c.1747C>T (p.His583Tyr) in the LDLR gene (NM_000527.4), while patient 2 carried the heterozygous variants c.1747C>T (p.His583Tyr) in the LDLR gene and c.6936_6937inv (p.Ile2313Val) in the APOB gene (NM_000384). According to the ACMG Guidelines, the LDLR gene c.1747C>T (p.His583Tyr) was classified as a pathogenic variant (PS3+PM1+PM2_supporting+PM5+PP2+PP3), and c.1871_1873del (p.Ile624del) was classified as a pathogenic variant (PS3+PS4+PM2_supporting+PM1+PM4); the APOB gene c.6936_6937inv (p.Ile2313Val) was classified as a variant of uncertain clinical significance (PM2_supporting BP4).</p><p><strong>Conclusion: </strong>Patients 1 and 2 in this study were patients with complex heterozygous variant FH, and their genotypic differences may be related to the differences in clinical serum LDL-C levels and the efficacy of hypolipidemic agents.</p>","PeriodicalId":39319,"journal":{"name":"中华医学遗传学杂志","volume":"42 2","pages":"212-218"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华医学遗传学杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn511374-20241026-00562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To investigate the gene detection results of 2 patients with familial hypercholesterolemia (FH) caused by complex heterozygous variation, and to clarify the relationship between clinical manifestations and gene variation.
Methods: Two patients (patient 1 and 2) with FH who visited Beijing Anzhen Hospital Affiliated to Capital Medical University in 2018 were selected as research subjects. A retrospective study method was used to collect clinical and family history data of the two patients. And 2 mL of peripheral venous blood from each of the two patients was collected, and genomic DNA extraction was performed on the blood samples. Sanger sequencing was used to validate the variant sites of the two patients detected by whole-exome sequencing (WES). Pathogenicity of variants was classified based on the American College of Medical Genetics and Genomics (ACMG) Standards and Guidelines for the Classification of Genetic Variants (hereinafter referred to as the "ACMG Guidelines"), and the impact of variant was analyzed using multiple bioinformatics tools including SIFT, PolyPhen-2, and SWISS-MODEL. This study has been approved by Beijing Anzhen Hospital Affiliated to Capital Medical University (Ethics No. 2024215X).
Results: Patient 1 initially presented with early-onset coronary heart disease, with initial lipid levels of serum total cholesterol (TC) 9.86 mmol/L (normal reference value: 3.10~5.20 mmol/L) and serum low-density lipoprotein cholesterol (LDL-C) 8.37 mmol/L (normal reference value: 1.27~3.12 mmol/L) on admission. Patient 1 initially underwent treatment with rosuvastatin combined with ezetimibe for one month, but the lipid-lowering effect was not significant. The lipid-lowering therapy was then adjusted to atorvastatin combined with ezetimibe and probucol. After one year of treatment, the patient developed paroxysmal chest pain symptoms. A follow-up lipid profile showed a serum TC level of 4.50 mmol/L and a LDL-C level of 3.55 mmol/L. The lipid-lowering regimen was continued, and the serum LDL-C levels were maintained between 2.65 and 3.66 mmol/L. Patient 2 was found to have an abnormally high blood lipid level and carotid artery hardening during physical examination, with an initial blood lipid level of serum TC 11.82 mmol/L and serum LDL-C 9.63 mmol/L. After receiving rosuvastatain therapy, the lipid-lowering effect was significant. WES revealed that patient 1 carried the heterozygous variants c.1871_1873del(p.Ile624del) and c.1747C>T (p.His583Tyr) in the LDLR gene (NM_000527.4), while patient 2 carried the heterozygous variants c.1747C>T (p.His583Tyr) in the LDLR gene and c.6936_6937inv (p.Ile2313Val) in the APOB gene (NM_000384). According to the ACMG Guidelines, the LDLR gene c.1747C>T (p.His583Tyr) was classified as a pathogenic variant (PS3+PM1+PM2_supporting+PM5+PP2+PP3), and c.1871_1873del (p.Ile624del) was classified as a pathogenic variant (PS3+PS4+PM2_supporting+PM1+PM4); the APOB gene c.6936_6937inv (p.Ile2313Val) was classified as a variant of uncertain clinical significance (PM2_supporting BP4).
Conclusion: Patients 1 and 2 in this study were patients with complex heterozygous variant FH, and their genotypic differences may be related to the differences in clinical serum LDL-C levels and the efficacy of hypolipidemic agents.
期刊介绍:
Chinese Journal of Medical Genetics is a medical journal, founded in 1984, under the supervision of the China Association for Science and Technology, sponsored by the Chinese Medical Association (hosted by Sichuan University), and is now a monthly magazine, which attaches importance to academic orientation, adheres to the scientific, scholarly, advanced, and innovative, and has a certain degree of influence in the industry.
Chinese Journal of Medical Genetics is a journal of Peking University, and is now included in Peking University Journal (Chinese Journal of Humanities and Social Sciences), CSCD Source Journals of Chinese Science Citation Database (with extended version), Statistical Source Journals (China Science and Technology Dissertation Outstanding Journals), Zhi.com (in Chinese), Wipu (in Chinese), Wanfang (in Chinese), CA Chemical Abstracts (U.S.), JST (Japan Science and Technology Science and Technology), and JST (Japan Science and Technology Science and Technology Research Center). ), JST (Japan Science and Technology Agency), Pж (AJ) Abstracts Journal (Russia), Copernicus Index (Poland), Cambridge Scientific Abstracts, Abstracts and Citation Database, Abstracts Magazine, Medical Abstracts, and so on.