{"title":"Predictive models of severe disease in patients with COVID-19 pneumonia at an early stage on CT images using topological properties.","authors":"Takahiro Iwasaki, Hidetaka Arimura, Shohei Inui, Takumi Kodama, Yun Hao Cui, Kenta Ninomiya, Hideyuki Iwanaga, Toshihiro Hayashi, Osamu Abe","doi":"10.1007/s12194-025-00906-1","DOIUrl":null,"url":null,"abstract":"<p><p>Prediction of severe disease (SVD) in patients with coronavirus disease (COVID-19) pneumonia at an early stage could allow for more appropriate triage and improve patient prognosis. Moreover, the visualization of the topological properties of COVID-19 pneumonia could help clinical physicians describe the reasons for their decisions. We aimed to construct predictive models of SVD in patients with COVID-19 pneumonia at an early stage on computed tomography (CT) images using SVD-specific features that can be visualized on accumulated Betti number (BN) maps. BN maps (b0 and b1 maps) were generated by calculating the BNs within a shifting kernel in a manner similar to a convolution. Accumulated BN maps were constructed by summing BN maps (b0 and b1 maps) derived from a range of multiple-threshold values. Topological features were computed as intrinsic topological properties of COVID-19 pneumonia from the accumulated BN maps. Predictive models of SVD were constructed with two feature selection methods and three machine learning models using nested fivefold cross-validation. The proposed model achieved an area under the receiver-operating characteristic curve of 0.854 and a sensitivity of 0.908 in a test fold. These results suggested that topological image features could characterize COVID-19 pneumonia at an early stage as SVD.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"534-546"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103364/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00906-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction of severe disease (SVD) in patients with coronavirus disease (COVID-19) pneumonia at an early stage could allow for more appropriate triage and improve patient prognosis. Moreover, the visualization of the topological properties of COVID-19 pneumonia could help clinical physicians describe the reasons for their decisions. We aimed to construct predictive models of SVD in patients with COVID-19 pneumonia at an early stage on computed tomography (CT) images using SVD-specific features that can be visualized on accumulated Betti number (BN) maps. BN maps (b0 and b1 maps) were generated by calculating the BNs within a shifting kernel in a manner similar to a convolution. Accumulated BN maps were constructed by summing BN maps (b0 and b1 maps) derived from a range of multiple-threshold values. Topological features were computed as intrinsic topological properties of COVID-19 pneumonia from the accumulated BN maps. Predictive models of SVD were constructed with two feature selection methods and three machine learning models using nested fivefold cross-validation. The proposed model achieved an area under the receiver-operating characteristic curve of 0.854 and a sensitivity of 0.908 in a test fold. These results suggested that topological image features could characterize COVID-19 pneumonia at an early stage as SVD.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.