The TITAN-X Platform Integrates Big Data, Artificial Intelligence, Bioinformatics, and Advanced Computational Modeling to Understand Immune Responses and Develop the Next Wave of Precision Medicines.
Ryan Baker, Josep Bassaganya-Riera, Nuria Tubau-Juni, Andrew J Leber, Raquel Hontecillas
{"title":"The TITAN-X Platform Integrates Big Data, Artificial Intelligence, Bioinformatics, and Advanced Computational Modeling to Understand Immune Responses and Develop the Next Wave of Precision Medicines.","authors":"Ryan Baker, Josep Bassaganya-Riera, Nuria Tubau-Juni, Andrew J Leber, Raquel Hontecillas","doi":"10.1146/annurev-biodatasci-103123-094804","DOIUrl":null,"url":null,"abstract":"<p><p>The TITAN-X Precision Medicine Platform was engineered to rapidly, fully, and efficiently utilize large-scale immunology datasets, including public data, in drug discovery and development. TITAN-X integrates big data with artificial intelligence (AI), bioinformatics, and advanced computational modeling to seamlessly transition from early target discovery to clinical testing of new therapeutics, developing biomarker-driven precision medicines tailored to specific patient populations. We illustrate the capabilities of TITAN-X through four case studies, demonstrating its use in computationally driven target discovery; characterization of novel immunometabolic mechanisms in infectious, inflammatory, and autoimmune diseases; and identification of biomarker signatures for patient stratification in clinical trials designed to maximize therapeutic efficacy and safety. Data-driven and AI-powered approaches like TITAN-X are enhancing the pace of drug development, reducing costs, tailoring treatments, and increasing the probability of success in clinical trials.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-103123-094804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The TITAN-X Precision Medicine Platform was engineered to rapidly, fully, and efficiently utilize large-scale immunology datasets, including public data, in drug discovery and development. TITAN-X integrates big data with artificial intelligence (AI), bioinformatics, and advanced computational modeling to seamlessly transition from early target discovery to clinical testing of new therapeutics, developing biomarker-driven precision medicines tailored to specific patient populations. We illustrate the capabilities of TITAN-X through four case studies, demonstrating its use in computationally driven target discovery; characterization of novel immunometabolic mechanisms in infectious, inflammatory, and autoimmune diseases; and identification of biomarker signatures for patient stratification in clinical trials designed to maximize therapeutic efficacy and safety. Data-driven and AI-powered approaches like TITAN-X are enhancing the pace of drug development, reducing costs, tailoring treatments, and increasing the probability of success in clinical trials.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.