Evaluation of Rolling Surveillance Methods in Context of Prior Aberrations: A Simulation Study With Routine Data From Low- and Middle-Income Countries.
IF 1.8 4区 医学Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Anuraag Gopaluni, Nicholas B Link, Emma Boley, Isabel Fulcher, Muhammed Semakula, Bethany Hedt-Gauthier
{"title":"Evaluation of Rolling Surveillance Methods in Context of Prior Aberrations: A Simulation Study With Routine Data From Low- and Middle-Income Countries.","authors":"Anuraag Gopaluni, Nicholas B Link, Emma Boley, Isabel Fulcher, Muhammed Semakula, Bethany Hedt-Gauthier","doi":"10.1002/sim.70075","DOIUrl":null,"url":null,"abstract":"<p><p>Syndromic surveillance integrated into routine health management information systems could improve timely detection of disease outbreaks, particularly in low- and middle-income countries that have limited diagnostic data. This study evaluates the impact of prior anomalies referred to as \"aberrations,\" such as historical outbreaks, that can distort \"baseline data\" on the accuracy of rolling surveillance methods that track ongoing disease trends. We assessed five widely used outbreak detection algorithms-EARS, Farrington, Holt-Winters, and two versions of the Weinberger-Fulcher model (negative binomial (WF NB) and quasipoisson (WF QP))-under simulation scenarios motivated by 5 years of acute respiratory infection data from Liberia. We evaluated seven data-generating mechanisms that cover a wide range of temporal and seasonal patterns. We assessed the accuracy of the outbreak detection algorithms under varied size and timing of outbreaks and aberrations. Accuracy was measured through sensitivity and specificity, with a joint assessment of both metrics using pseudo-ROC curves. Results showed that the introduction of aberrations reduced sensitivity in general, but the algorithms' relative performances were highly context-dependent. EARS and WF models demonstrated high sensitivity for detecting outbreaks when no recent aberrations were present. However, when aberrations occurred within the last year of baseline data, Holt-Winters-unless there was evidence of strong time trends-and WF QP maintained better overall balance between sensitivity and specificity. The Farrington algorithm exhibited strong sensitivity with recent aberrations but at the cost of lower specificity. These findings provide actionable insights and practical recommendations for implementing rolling surveillance in resource-constrained environments, emphasizing the need to consider historical data disturbances and rigorously evaluate sensitivity and specificity jointly.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 8-9","pages":"e70075"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70075","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Syndromic surveillance integrated into routine health management information systems could improve timely detection of disease outbreaks, particularly in low- and middle-income countries that have limited diagnostic data. This study evaluates the impact of prior anomalies referred to as "aberrations," such as historical outbreaks, that can distort "baseline data" on the accuracy of rolling surveillance methods that track ongoing disease trends. We assessed five widely used outbreak detection algorithms-EARS, Farrington, Holt-Winters, and two versions of the Weinberger-Fulcher model (negative binomial (WF NB) and quasipoisson (WF QP))-under simulation scenarios motivated by 5 years of acute respiratory infection data from Liberia. We evaluated seven data-generating mechanisms that cover a wide range of temporal and seasonal patterns. We assessed the accuracy of the outbreak detection algorithms under varied size and timing of outbreaks and aberrations. Accuracy was measured through sensitivity and specificity, with a joint assessment of both metrics using pseudo-ROC curves. Results showed that the introduction of aberrations reduced sensitivity in general, but the algorithms' relative performances were highly context-dependent. EARS and WF models demonstrated high sensitivity for detecting outbreaks when no recent aberrations were present. However, when aberrations occurred within the last year of baseline data, Holt-Winters-unless there was evidence of strong time trends-and WF QP maintained better overall balance between sensitivity and specificity. The Farrington algorithm exhibited strong sensitivity with recent aberrations but at the cost of lower specificity. These findings provide actionable insights and practical recommendations for implementing rolling surveillance in resource-constrained environments, emphasizing the need to consider historical data disturbances and rigorously evaluate sensitivity and specificity jointly.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.