Segmentation-assisted vessel centerline extraction from cerebral CT Angiography

IF 3.2 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Medical physics Pub Date : 2025-04-28 DOI:10.1002/mp.17855
Sijie Liu, Ruisheng Su, Jiahang Su, Wim H. van Zwam, Pieter Jan van Doormaal, Aad van der Lugt, Wiro J. Niessen, Theo van Walsum
{"title":"Segmentation-assisted vessel centerline extraction from cerebral CT Angiography","authors":"Sijie Liu,&nbsp;Ruisheng Su,&nbsp;Jiahang Su,&nbsp;Wim H. van Zwam,&nbsp;Pieter Jan van Doormaal,&nbsp;Aad van der Lugt,&nbsp;Wiro J. Niessen,&nbsp;Theo van Walsum","doi":"10.1002/mp.17855","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3> \n <p>The accurate automated extraction of brain vessel centerlines from Computed tomographic angiography (CTA) images plays an important role in diagnosing and treating cerebrovascular diseases such as stroke. Despite its significance, this task is complicated by the complex cerebrovascular structure and heterogeneous imaging quality.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3> \n <p>This study aims to develop and validate a segmentation-assisted framework designed to improve the accuracy and efficiency of brain vessel centerline extraction from CTA images. We streamline the process of lumen segmentation generation without additional annotation effort from physicians, enhancing the effectiveness of centerline extraction.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3> \n <p>The framework integrates four modules: (1) pre-processing techniques that register CTA images with a CT atlas and divide these images into input patches, (2) lumen segmentation generation from annotated vessel centerlines using graph cuts and robust kernel regression, (3) a dual-branch topology-aware UNet (DTUNet) that optimizes the use of the annotated vessel centerlines and the generated lumen segmentation via a topology-aware loss (TAL) and its dual-branch structure, and (4) post-processing methods that skeletonize and refine the lumen segmentation predicted by the DTUNet.</p>\n </section>\n \n <section>\n \n <h3> Results</h3> \n <p>An in-house dataset derived from a subset of the MR CLEAN Registry is used to evaluate the proposed framework. The dataset comprises 10 intracranial CTA images, and 40 cube CTA sub-images with a resolution of <span></span><math>\n <semantics>\n <mrow>\n <mn>128</mn>\n <mo>×</mo>\n <mn>128</mn>\n <mo>×</mo>\n <mn>128</mn>\n </mrow>\n <annotation>$128 \\times 128 \\times 128$</annotation>\n </semantics></math> voxels. Via five-fold cross-validation on this dataset, we demonstrate that the proposed framework consistently outperforms state-of-the-art methods in terms of average symmetric centerline distance (ASCD) and overlap (OV). Specifically, it achieves an ASCD of 0.84, an <span></span><math>\n <semantics>\n <msub>\n <mi>OV</mi>\n <mn>1.0</mn>\n </msub>\n <annotation>$\\textrm {OV}_{1.0}$</annotation>\n </semantics></math> of 0.839, and an <span></span><math>\n <semantics>\n <msub>\n <mi>OV</mi>\n <mn>1.5</mn>\n </msub>\n <annotation>$\\textrm {OV}_{1.5}$</annotation>\n </semantics></math> of 0.885 for intracranial CTA images, and obtains an ASCD of 1.26, an <span></span><math>\n <semantics>\n <msub>\n <mi>OV</mi>\n <mn>1.0</mn>\n </msub>\n <annotation>$\\textrm {OV}_{1.0}$</annotation>\n </semantics></math> of 0.779, and an <span></span><math>\n <semantics>\n <msub>\n <mi>OV</mi>\n <mn>1.5</mn>\n </msub>\n <annotation>$\\textrm {OV}_{1.5}$</annotation>\n </semantics></math> of 0.824 for cube CTA sub-images. Subgroup analyses further suggest that the proposed framework holds promise in clinical applications for stroke diagnosis and treatment.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3> \n <p>By automating the process of lumen segmentation generation and optimizing the network design of vessel centerline extraction, DTUnet achieves high performance without introducing additional annotation demands. This solution promises to be beneficial in various clinical applications in cerebrovascular disease management.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"52 7","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17855","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17855","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The accurate automated extraction of brain vessel centerlines from Computed tomographic angiography (CTA) images plays an important role in diagnosing and treating cerebrovascular diseases such as stroke. Despite its significance, this task is complicated by the complex cerebrovascular structure and heterogeneous imaging quality.

Purpose

This study aims to develop and validate a segmentation-assisted framework designed to improve the accuracy and efficiency of brain vessel centerline extraction from CTA images. We streamline the process of lumen segmentation generation without additional annotation effort from physicians, enhancing the effectiveness of centerline extraction.

Methods

The framework integrates four modules: (1) pre-processing techniques that register CTA images with a CT atlas and divide these images into input patches, (2) lumen segmentation generation from annotated vessel centerlines using graph cuts and robust kernel regression, (3) a dual-branch topology-aware UNet (DTUNet) that optimizes the use of the annotated vessel centerlines and the generated lumen segmentation via a topology-aware loss (TAL) and its dual-branch structure, and (4) post-processing methods that skeletonize and refine the lumen segmentation predicted by the DTUNet.

Results

An in-house dataset derived from a subset of the MR CLEAN Registry is used to evaluate the proposed framework. The dataset comprises 10 intracranial CTA images, and 40 cube CTA sub-images with a resolution of 128 × 128 × 128 $128 \times 128 \times 128$ voxels. Via five-fold cross-validation on this dataset, we demonstrate that the proposed framework consistently outperforms state-of-the-art methods in terms of average symmetric centerline distance (ASCD) and overlap (OV). Specifically, it achieves an ASCD of 0.84, an OV 1.0 $\textrm {OV}_{1.0}$ of 0.839, and an OV 1.5 $\textrm {OV}_{1.5}$ of 0.885 for intracranial CTA images, and obtains an ASCD of 1.26, an OV 1.0 $\textrm {OV}_{1.0}$ of 0.779, and an OV 1.5 $\textrm {OV}_{1.5}$ of 0.824 for cube CTA sub-images. Subgroup analyses further suggest that the proposed framework holds promise in clinical applications for stroke diagnosis and treatment.

Conclusions

By automating the process of lumen segmentation generation and optimizing the network design of vessel centerline extraction, DTUnet achieves high performance without introducing additional annotation demands. This solution promises to be beneficial in various clinical applications in cerebrovascular disease management.

Abstract Image

脑CT血管造影分割辅助血管中心线提取。
背景:计算机断层血管造影(CTA)图像中脑血管中心线的准确自动提取在脑卒中等脑血管疾病的诊断和治疗中具有重要作用。尽管具有重要意义,但由于复杂的脑血管结构和不均匀的成像质量,这项任务变得复杂。目的:本研究旨在开发和验证一个分割辅助框架,旨在提高从CTA图像中提取脑血管中心线的准确性和效率。我们简化了腔体分割生成的过程,而无需医生额外的注释工作,提高了中心线提取的有效性。方法:该框架集成了四个模块:(1)将CTA图像与CT图谱进行配准并将这些图像划分为输入补丁的预处理技术;(2)使用图切割和鲁棒核回归从标注血管中心线生成管腔分割;(3)通过拓扑感知损失(TAL)及其双分支结构优化使用标注血管中心线和生成的管腔分割的双分支拓扑感知UNet (DTUNet);(4)对DTUNet预测的腔体分割进行骨架化和细化的后处理方法。结果:从MR CLEAN Registry的一个子集派生的内部数据集用于评估提议的框架。该数据集包括10张颅内CTA图像和40张立方体CTA子图像,分辨率为128 × 128 × 128$ 128 \times 128 \times 128$体素。通过对该数据集的五次交叉验证,我们证明了所提出的框架在平均对称中心线距离(ASCD)和重叠(OV)方面始终优于最先进的方法。其中,颅内CTA图像的ASCD为0.84,OV 1.0 $\textrm {OV}{1.0}$为0.839,OV 1.5 $\textrm {OV}{1.5}$为0.885;立方体CTA子图像的ASCD为1.26,OV 1.0 $\textrm {OV}{1.0}$为0.779,OV 1.5 $\textrm {OV}{1.5}$为0.824。亚组分析进一步表明,所提出的框架在中风诊断和治疗的临床应用中具有前景。结论:通过自动化管腔分割生成过程和优化血管中心线提取的网络设计,DTUnet在不引入额外注释需求的情况下实现了高性能。该解决方案有望在脑血管疾病管理的各种临床应用中发挥有益作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical physics
Medical physics 医学-核医学
CiteScore
6.80
自引率
15.80%
发文量
660
审稿时长
1.7 months
期刊介绍: Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信