Mohammad S E Sendi, Vaibhavi S Itkyal, Sabrina J Edwards-Swart, Ji Ye Chun, Daniel H Mathalon, Judith M Ford, Adrian Preda, Theo G M van Erp, Godfrey D Pearlson, Jessica A Turner, Vince D Calhoun
{"title":"Visualizing functional network connectivity differences using an explainable machine-learning method.","authors":"Mohammad S E Sendi, Vaibhavi S Itkyal, Sabrina J Edwards-Swart, Ji Ye Chun, Daniel H Mathalon, Judith M Ford, Adrian Preda, Theo G M van Erp, Godfrey D Pearlson, Jessica A Turner, Vince D Calhoun","doi":"10.1088/1361-6579/adce52","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Functional network connectivity (FNC) estimated from resting-state functional magnetic resonance imaging showed great information about the neural mechanism in different brain disorders. But previous research has mainly focused on standard statistical learning approaches to find FNC features separating patients from control. While machine learning models can improve classification accuracy, they often lack interpretability, making it difficult to understand how they arrive at their decisions.<i>Approach</i>. Explainable machine learning helps address this issue by identifying which features contribute most to the model's predictions. In this study, we introduce a novel framework leveraging SHapley Additive exPlanations (SHAPs) to identify crucial FNC features distinguishing between two distinct population classes.<i>Main results</i>. Initially, we validate our approach using synthetic data. Subsequently, applying our framework, we ascertain FNC biomarkers distinguishing between, controls and schizophrenia (SZ) patients with accuracy of 81.04% as well as middle aged adults and old aged adults with accuracy 71.38%, respectively, employing random forest, XGBoost, and CATBoost models.<i>Significance</i>. Our analysis underscores the pivotal role of the cognitive control network (CCN), subcortical network (SCN), and somatomotor network in discerning individuals with SZ from controls. In addition, our platform found CCN and SCN as the most important networks separating young adults from older.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":"46 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/adce52","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Functional network connectivity (FNC) estimated from resting-state functional magnetic resonance imaging showed great information about the neural mechanism in different brain disorders. But previous research has mainly focused on standard statistical learning approaches to find FNC features separating patients from control. While machine learning models can improve classification accuracy, they often lack interpretability, making it difficult to understand how they arrive at their decisions.Approach. Explainable machine learning helps address this issue by identifying which features contribute most to the model's predictions. In this study, we introduce a novel framework leveraging SHapley Additive exPlanations (SHAPs) to identify crucial FNC features distinguishing between two distinct population classes.Main results. Initially, we validate our approach using synthetic data. Subsequently, applying our framework, we ascertain FNC biomarkers distinguishing between, controls and schizophrenia (SZ) patients with accuracy of 81.04% as well as middle aged adults and old aged adults with accuracy 71.38%, respectively, employing random forest, XGBoost, and CATBoost models.Significance. Our analysis underscores the pivotal role of the cognitive control network (CCN), subcortical network (SCN), and somatomotor network in discerning individuals with SZ from controls. In addition, our platform found CCN and SCN as the most important networks separating young adults from older.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.