Explainable machine learning to predict the cost of capital.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-04-10 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1578190
Niklas Bussmann, Paolo Giudici, Alessandra Tanda, Ellen Pei-Yi Yu
{"title":"Explainable machine learning to predict the cost of capital.","authors":"Niklas Bussmann, Paolo Giudici, Alessandra Tanda, Ellen Pei-Yi Yu","doi":"10.3389/frai.2025.1578190","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the impact of financial and non-financial factors on a firm's ex-ante cost of capital, which is the reflection of investors' perception on a firm's riskiness. Departing from previous literature, we apply the XGBoost algorithm and two explainable Artificial Intelligence methods, namely the Shapley value approach and Lorenz Model Selection to a sample of more than 1,400 listed companies worldwide. Results confirm the relevance of key financial indicators such as firm size, ROE, firm portfolio risk, but also individuate firm's non-financial features and country's institutional quality as relevant predictors for the cost of capital. These results suggest the importance of non-financial indicators and country institutional quality on the firm's ex-ante cost of equity that expresses investors' risk perception. Our findings pave the way for future investigations on the impact of ESG and country factors in predicting the cost of capital.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1578190"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1578190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the impact of financial and non-financial factors on a firm's ex-ante cost of capital, which is the reflection of investors' perception on a firm's riskiness. Departing from previous literature, we apply the XGBoost algorithm and two explainable Artificial Intelligence methods, namely the Shapley value approach and Lorenz Model Selection to a sample of more than 1,400 listed companies worldwide. Results confirm the relevance of key financial indicators such as firm size, ROE, firm portfolio risk, but also individuate firm's non-financial features and country's institutional quality as relevant predictors for the cost of capital. These results suggest the importance of non-financial indicators and country institutional quality on the firm's ex-ante cost of equity that expresses investors' risk perception. Our findings pave the way for future investigations on the impact of ESG and country factors in predicting the cost of capital.

可解释的机器学习来预测资本成本。
本研究考察了财务和非财务因素对企业事前资本成本的影响,事前资本成本是投资者对企业风险认知的反映。从以往的文献出发,我们将XGBoost算法和两种可解释的人工智能方法,即Shapley值法和Lorenz模型选择,应用于全球1400多家上市公司的样本。结果证实了公司规模、ROE、公司投资组合风险等关键财务指标的相关性,但也表明公司的非财务特征和国家的制度质量是资本成本的相关预测因素。这些结果表明,非财务指标和国家机构质量对公司事前股权成本的重要性,反映了投资者的风险感知。我们的研究结果为未来研究ESG和国家因素在预测资本成本方面的影响铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信