A deep learning model with interpretable squeeze-and-excitation for automated rehabilitation exercise assessment.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Md Johir Raihan, Md Atiqur Rahman Ahad, Abdullah-Al Nahid
{"title":"A deep learning model with interpretable squeeze-and-excitation for automated rehabilitation exercise assessment.","authors":"Md Johir Raihan, Md Atiqur Rahman Ahad, Abdullah-Al Nahid","doi":"10.1007/s11517-025-03372-4","DOIUrl":null,"url":null,"abstract":"<p><p>Rehabilitation exercises are critical for recovering from motor dysfunction caused by neurological conditions like stroke, back pain, Parkinson's disease, and spinal cord injuries. Traditionally, these exercises require constant monitoring by therapists, which is time-consuming and costly, often leading to therapist shortages. This paper introduces a deep learning model, convolutional neural network - squeeze excitation (CNN-SE), to automate rehabilitation exercise assessment. By optimizing its parameters with the grey wolf optimization algorithm, the model was fine-tuned for optimal performance. The model's effectiveness was tested on both healthy and unhealthy participants with motor dysfunction, providing a comprehensive evaluation of its capabilities. To interpret the model's decisions and understand its inner workings, we employed Shapley additive explanations (SHAP) to analyze feature importance at each time step. Our CNN-SE model achieved a state-of-the-art mean absolute deviation of 0.127 on the KIMORE dataset and a comparable MAD of 0.014 on the UI-PRMD dataset across various exercises, demonstrating its potential to provide a cost-effective, efficient alternative to traditional therapist-led evaluations.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03372-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Rehabilitation exercises are critical for recovering from motor dysfunction caused by neurological conditions like stroke, back pain, Parkinson's disease, and spinal cord injuries. Traditionally, these exercises require constant monitoring by therapists, which is time-consuming and costly, often leading to therapist shortages. This paper introduces a deep learning model, convolutional neural network - squeeze excitation (CNN-SE), to automate rehabilitation exercise assessment. By optimizing its parameters with the grey wolf optimization algorithm, the model was fine-tuned for optimal performance. The model's effectiveness was tested on both healthy and unhealthy participants with motor dysfunction, providing a comprehensive evaluation of its capabilities. To interpret the model's decisions and understand its inner workings, we employed Shapley additive explanations (SHAP) to analyze feature importance at each time step. Our CNN-SE model achieved a state-of-the-art mean absolute deviation of 0.127 on the KIMORE dataset and a comparable MAD of 0.014 on the UI-PRMD dataset across various exercises, demonstrating its potential to provide a cost-effective, efficient alternative to traditional therapist-led evaluations.

用于自动康复训练评估的具有可解释挤压和激励的深度学习模型。
康复训练对于从中风、背痛、帕金森氏症和脊髓损伤等神经系统疾病引起的运动功能障碍中恢复至关重要。传统上,这些练习需要治疗师的持续监控,这既耗时又昂贵,经常导致治疗师短缺。本文介绍了一种深度学习模型——卷积神经网络-挤压激励(CNN-SE),用于自动化康复训练评估。通过灰狼优化算法对模型参数进行优化,使模型达到最优性能。该模型的有效性在健康和不健康的运动功能障碍参与者身上进行了测试,提供了对其能力的全面评估。为了解释模型的决策并理解其内部工作原理,我们采用Shapley加性解释(SHAP)来分析每个时间步的特征重要性。我们的CNN-SE模型在KIMORE数据集上实现了最先进的平均绝对偏差0.127,在UI-PRMD数据集上实现了可比较的MAD为0.014,这表明它有潜力提供一种经济有效的替代传统治疗师主导的评估方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信