Evaluating algorithmic bias on biomarker classification of breast cancer pathology reports.

IF 3.4 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2025-05-09 eCollection Date: 2025-06-01 DOI:10.1093/jamiaopen/ooaf033
Jordan Tschida, Mayanka Chandrashekar, Alina Peluso, Zachary Fox, Patrycja Krawczuk, Dakota Murdock, Xiao-Cheng Wu, John Gounley, Heidi A Hanson
{"title":"Evaluating algorithmic bias on biomarker classification of breast cancer pathology reports.","authors":"Jordan Tschida, Mayanka Chandrashekar, Alina Peluso, Zachary Fox, Patrycja Krawczuk, Dakota Murdock, Xiao-Cheng Wu, John Gounley, Heidi A Hanson","doi":"10.1093/jamiaopen/ooaf033","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This work evaluated algorithmic bias in biomarkers classification using electronic pathology reports from female breast cancer cases. Bias was assessed across 5 subgroups: cancer registry, race, Hispanic ethnicity, age at diagnosis, and socioeconomic status.</p><p><strong>Materials and methods: </strong>We utilized 594 875 electronic pathology reports from 178 121 tumors diagnosed in Kentucky, Louisiana, New Jersey, New Mexico, Seattle, and Utah to train 2 deep-learning algorithms to classify breast cancer patients using their biomarkers test results. We used balanced error rate (BER), demographic parity (DP), equalized odds (EOD), and equal opportunity (EOP) to assess bias.</p><p><strong>Results: </strong>We found differences in predictive accuracy between registries, with the highest accuracy in the registry that contributed the most data (Seattle Registry, BER ratios for all registries >1.25). BER showed no significant algorithmic bias in extracting biomarkers (estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2) for race, Hispanic ethnicity, age at diagnosis, or socioeconomic subgroups (BER ratio <1.25). DP, EOD, and EOP all showed insignificant results.</p><p><strong>Discussion: </strong>We observed significant differences in BER by registry, but no significant bias using the DP, EOD, and EOP metrics for socio-demographic or racial categories. This highlights the importance of employing a diverse set of metrics for a comprehensive evaluation of model fairness.</p><p><strong>Conclusion: </strong>A thorough evaluation of algorithmic biases that may affect equality in clinical care is a critical step before deploying algorithms in the real world. We found little evidence of algorithmic bias in our biomarker classification tool. Artificial intelligence tools to expedite information extraction from clinical records could accelerate clinical trial matching and improve care.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 3","pages":"ooaf033"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooaf033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This work evaluated algorithmic bias in biomarkers classification using electronic pathology reports from female breast cancer cases. Bias was assessed across 5 subgroups: cancer registry, race, Hispanic ethnicity, age at diagnosis, and socioeconomic status.

Materials and methods: We utilized 594 875 electronic pathology reports from 178 121 tumors diagnosed in Kentucky, Louisiana, New Jersey, New Mexico, Seattle, and Utah to train 2 deep-learning algorithms to classify breast cancer patients using their biomarkers test results. We used balanced error rate (BER), demographic parity (DP), equalized odds (EOD), and equal opportunity (EOP) to assess bias.

Results: We found differences in predictive accuracy between registries, with the highest accuracy in the registry that contributed the most data (Seattle Registry, BER ratios for all registries >1.25). BER showed no significant algorithmic bias in extracting biomarkers (estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2) for race, Hispanic ethnicity, age at diagnosis, or socioeconomic subgroups (BER ratio <1.25). DP, EOD, and EOP all showed insignificant results.

Discussion: We observed significant differences in BER by registry, but no significant bias using the DP, EOD, and EOP metrics for socio-demographic or racial categories. This highlights the importance of employing a diverse set of metrics for a comprehensive evaluation of model fairness.

Conclusion: A thorough evaluation of algorithmic biases that may affect equality in clinical care is a critical step before deploying algorithms in the real world. We found little evidence of algorithmic bias in our biomarker classification tool. Artificial intelligence tools to expedite information extraction from clinical records could accelerate clinical trial matching and improve care.

评估乳腺癌病理报告中生物标志物分类的算法偏差。
目的:本研究利用女性乳腺癌病例的电子病理报告评估生物标志物分类的算法偏差。在5个亚组中评估偏倚:癌症登记、种族、西班牙裔、诊断年龄和社会经济地位。材料和方法:我们利用肯塔基州、路易斯安那州、新泽西州、新墨西哥州、西雅图和犹他州诊断的178 121例肿瘤的594 875份电子病理报告,训练两种深度学习算法,根据其生物标志物检测结果对乳腺癌患者进行分类。我们使用平衡错误率(BER)、人口均等(DP)、均等几率(EOD)和均等机会(EOP)来评估偏倚。结果:我们发现注册中心之间的预测准确性存在差异,在提供最多数据的注册中心中准确率最高(西雅图注册中心,所有注册中心的误码率为1.25)。在提取种族、西班牙裔、诊断年龄或社会经济亚组的生物标志物(雌激素受体、孕激素受体、人表皮生长因子受体2)时,BER显示没有显著的算法偏差。讨论:我们通过登记观察到BER的显著差异,但使用DP、EOD和EOP指标对社会人口统计学或种族分类没有显著的偏差。这突出了采用一套不同的指标来全面评估模型公平性的重要性。结论:在将算法应用于现实世界之前,对可能影响临床护理公平性的算法偏差进行彻底评估是至关重要的一步。我们发现在我们的生物标记物分类工具中几乎没有算法偏差的证据。加速从临床记录中提取信息的人工智能工具可以加速临床试验匹配并改善护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信