Ultrasound detection of nonalcoholic steatohepatitis using convolutional neural networks with dual-branch global-local feature fusion architecture.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Trina Chattopadhyay, Chun-Hao Lu, Yi-Ping Chao, Chiao-Yin Wang, Dar-In Tai, Ming-Wei Lai, Zhuhuang Zhou, Po-Hsiang Tsui
{"title":"Ultrasound detection of nonalcoholic steatohepatitis using convolutional neural networks with dual-branch global-local feature fusion architecture.","authors":"Trina Chattopadhyay, Chun-Hao Lu, Yi-Ping Chao, Chiao-Yin Wang, Dar-In Tai, Ming-Wei Lai, Zhuhuang Zhou, Po-Hsiang Tsui","doi":"10.1007/s11517-025-03361-7","DOIUrl":null,"url":null,"abstract":"<p><p>Nonalcoholic steatohepatitis (NASH) is a contributing factor to liver cancer, with ultrasound B-mode imaging as the first-line diagnostic tool. This study applied deep learning to ultrasound B-scan images for NASH detection and introduced an ultrasound-specific data augmentation (USDA) technique with a dual-branch global-local feature fusion architecture (DG-LFFA) to improve model performance and adaptability across imaging conditions. A total of 137 participants were included. Ultrasound images underwent data augmentation (rotation and USDA) for training and testing convolutional neural networks-AlexNet, Inception V3, VGG16, VGG19, ResNet50, and DenseNet201. Gradient-weighted class activation mapping (Grad-CAM) analyzed model attention patterns, guiding the selection of the optimal backbone for DG-LFFA implementation. The models achieved testing accuracies of 0.81-0.83 with rotation-based data augmentation. Grad-CAM analysis showed that ResNet50 and DenseNet201 exhibited stronger liver attention. When USDA simulated datasets from different imaging conditions, DG-LFFA (based on ResNet50 and DenseNet201) improved accuracy (0.79 to 0.84 and 0.78 to 0.83), recall (0.72 to 0.81 and 0.70 to 0.78), and F1 score (0.80 to 0.84 for both models). In conclusion, deep architectures (ResNet50 and DenseNet201) enable focused analysis of liver regions for NASH detection. Under USDA-simulated imaging variations, the proposed DG-LFFA framework further improves diagnostic performance.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03361-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Nonalcoholic steatohepatitis (NASH) is a contributing factor to liver cancer, with ultrasound B-mode imaging as the first-line diagnostic tool. This study applied deep learning to ultrasound B-scan images for NASH detection and introduced an ultrasound-specific data augmentation (USDA) technique with a dual-branch global-local feature fusion architecture (DG-LFFA) to improve model performance and adaptability across imaging conditions. A total of 137 participants were included. Ultrasound images underwent data augmentation (rotation and USDA) for training and testing convolutional neural networks-AlexNet, Inception V3, VGG16, VGG19, ResNet50, and DenseNet201. Gradient-weighted class activation mapping (Grad-CAM) analyzed model attention patterns, guiding the selection of the optimal backbone for DG-LFFA implementation. The models achieved testing accuracies of 0.81-0.83 with rotation-based data augmentation. Grad-CAM analysis showed that ResNet50 and DenseNet201 exhibited stronger liver attention. When USDA simulated datasets from different imaging conditions, DG-LFFA (based on ResNet50 and DenseNet201) improved accuracy (0.79 to 0.84 and 0.78 to 0.83), recall (0.72 to 0.81 and 0.70 to 0.78), and F1 score (0.80 to 0.84 for both models). In conclusion, deep architectures (ResNet50 and DenseNet201) enable focused analysis of liver regions for NASH detection. Under USDA-simulated imaging variations, the proposed DG-LFFA framework further improves diagnostic performance.

基于双分支全局-局部特征融合结构的卷积神经网络超声检测非酒精性脂肪性肝炎。
非酒精性脂肪性肝炎(NASH)是导致肝癌的一个因素,b超成像是一线诊断工具。本研究将深度学习应用于超声b扫描图像,用于NASH检测,并引入了一种超声特异性数据增强(USDA)技术,该技术采用双分支全局-局部特征融合架构(DG-LFFA),以提高模型的性能和跨成像条件的适应性。共纳入137名参与者。超声图像进行数据增强(旋转和USDA),以训练和测试卷积神经网络——alexnet、Inception V3、VGG16、VGG19、ResNet50和DenseNet201。梯度加权类激活映射(Gradient-weighted class activation mapping, Grad-CAM)分析了模型的注意模式,指导了实现DG-LFFA的最优骨干网的选择。基于旋转的数据增强模型的测试精度为0.81-0.83。Grad-CAM分析显示ResNet50和DenseNet201表现出更强的肝脏关注。当美国农业部模拟来自不同成像条件的数据集时,DG-LFFA(基于ResNet50和DenseNet201)提高了准确率(0.79至0.84和0.78至0.83),召回率(0.72至0.81和0.70至0.78)和F1分数(两种模型的0.80至0.84)。总之,深度架构(ResNet50和DenseNet201)能够集中分析肝脏区域,用于NASH检测。在美国农业部模拟的成像变化下,所提出的DG-LFFA框架进一步提高了诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信