PPIFold: a tool for analysis of protein-protein interaction from AlphaPullDown.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-04-24 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf090
Quentin Rouger, Emmanuel Giudice, Damien F Meyer, Kévin Macé
{"title":"PPIFold: a tool for analysis of protein-protein interaction from AlphaPullDown.","authors":"Quentin Rouger, Emmanuel Giudice, Damien F Meyer, Kévin Macé","doi":"10.1093/bioadv/vbaf090","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Protein structure and protein-protein interaction (PPI) predictions based on coevolution have transformed structural biology, but managing pre-processing and post-processing can be complex and time-consuming, making these tools less accessible.</p><p><strong>Results: </strong>Here, we introduce PPIFold, a pipeline built on the AlphaPulldown Python package, designed to automate file handling and streamline the generation of outputs, facilitating the interpretation of PPI prediction results. The pipeline was validated on the bacterial Type 4 Secretion System nanomachine, demonstrating its effectiveness in simplifying PPI analysis and enhancing accessibility for researchers.</p><p><strong>Availability and implementation: </strong>PPIFold is implemented as a pip package and available at: https://github.com/Qrouger/PPIFold.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf090"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064169/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Protein structure and protein-protein interaction (PPI) predictions based on coevolution have transformed structural biology, but managing pre-processing and post-processing can be complex and time-consuming, making these tools less accessible.

Results: Here, we introduce PPIFold, a pipeline built on the AlphaPulldown Python package, designed to automate file handling and streamline the generation of outputs, facilitating the interpretation of PPI prediction results. The pipeline was validated on the bacterial Type 4 Secretion System nanomachine, demonstrating its effectiveness in simplifying PPI analysis and enhancing accessibility for researchers.

Availability and implementation: PPIFold is implemented as a pip package and available at: https://github.com/Qrouger/PPIFold.

PPIFold:来自AlphaPullDown的蛋白质相互作用分析工具。
动机:基于协同进化的蛋白质结构和蛋白质-蛋白质相互作用(PPI)预测已经改变了结构生物学,但管理预处理和后处理可能是复杂和耗时的,使这些工具不太容易获得。结果:在这里,我们介绍了PPIFold,一个建立在AlphaPulldown Python包上的管道,旨在自动化文件处理和简化输出的生成,促进PPI预测结果的解释。该管道在细菌4型分泌系统纳米机器上进行了验证,证明了其在简化PPI分析和提高研究人员可及性方面的有效性。可用性和实现:PPIFold作为一个pip包实现,可在:https://github.com/Qrouger/PPIFold获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信