{"title":"Real-time morphological and dosimetric adaptation in nasopharyngeal carcinoma radiotherapy: insights from autosegmented fractional fan-beam CT.","authors":"Xiao-Li Yu, Jiang Hu, Yu-Xian Yang, Guang-Yu Wang, Xin Yang, Wen-Chao Diao, Lu Liu, Xiao-Bo Jiang, Chen-di Xu, Liu-Wen Lin, Le-Cheng Jia, Hua Li, Yan-Fei Liu, Ying Sun, Guan-Qun Zhou","doi":"10.1186/s13014-025-02643-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To quantify morphological and dosimetric variations in nasopharyngeal carcinoma (NPC) radiotherapy via autosegmented fan-beam computed tomography (FBCT) and to inform decision-making regarding appropriate objectives and optimal timing for adaptive radiotherapy (ART).</p><p><strong>Methods: </strong>This retrospective study analyzed 23 NPC patients (681 FBCT scans) treated at Sun Yat-sen Cancer Center from August 2022 to May 2024. The inclusion criterion was as follows: ≥1 weekly FBCT via a CT-linac with ≤ 2 fractions between scans. Four deep learning-based autosegmentation models were developed to assess weekly volume, Dice similarity coefficient (DSC), and dose variations in organs at risk (OARs) and target volumes.</p><p><strong>Results: </strong>A systematic review of autosegmentation on FBCT scans demonstrated satisfactory accuracy overall, and missegmentation was manually modified. Linear decreases in volume and/or DSC were observed in the parotid glands, submandibular glands, thyroid, spinal cord, and target volumes (R² > 0.7). The linear dose variation included coverage of the low risk planning target volume (-3.01%), the mean dose to the parotid glands (+ 2.45 Gy) and thyroid (+ 1.18 Gy), the D1% of the brainstem (+ 0.56 Gy), and the maximum dose to the spinal cord (+ 1.12 Gy). The greatest reduction in target volume coverage was noted in PGTVns, reaching 7.15%. The most significant dose changes occurred during weeks 3-6.</p><p><strong>Conclusions: </strong>During NPC radiotherapy, the progressive dose deviations may not be corrected through repositioning alone, necessitating ART intervention. As dose variations in OARs rarely exceed 3 Gy and target coverage fluctuations remain within 10%, ART does not need to be performed frequently, and weeks 3-6 represent the most appropriate window.</p>","PeriodicalId":49639,"journal":{"name":"Radiation Oncology","volume":"20 1","pages":"68"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13014-025-02643-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To quantify morphological and dosimetric variations in nasopharyngeal carcinoma (NPC) radiotherapy via autosegmented fan-beam computed tomography (FBCT) and to inform decision-making regarding appropriate objectives and optimal timing for adaptive radiotherapy (ART).
Methods: This retrospective study analyzed 23 NPC patients (681 FBCT scans) treated at Sun Yat-sen Cancer Center from August 2022 to May 2024. The inclusion criterion was as follows: ≥1 weekly FBCT via a CT-linac with ≤ 2 fractions between scans. Four deep learning-based autosegmentation models were developed to assess weekly volume, Dice similarity coefficient (DSC), and dose variations in organs at risk (OARs) and target volumes.
Results: A systematic review of autosegmentation on FBCT scans demonstrated satisfactory accuracy overall, and missegmentation was manually modified. Linear decreases in volume and/or DSC were observed in the parotid glands, submandibular glands, thyroid, spinal cord, and target volumes (R² > 0.7). The linear dose variation included coverage of the low risk planning target volume (-3.01%), the mean dose to the parotid glands (+ 2.45 Gy) and thyroid (+ 1.18 Gy), the D1% of the brainstem (+ 0.56 Gy), and the maximum dose to the spinal cord (+ 1.12 Gy). The greatest reduction in target volume coverage was noted in PGTVns, reaching 7.15%. The most significant dose changes occurred during weeks 3-6.
Conclusions: During NPC radiotherapy, the progressive dose deviations may not be corrected through repositioning alone, necessitating ART intervention. As dose variations in OARs rarely exceed 3 Gy and target coverage fluctuations remain within 10%, ART does not need to be performed frequently, and weeks 3-6 represent the most appropriate window.
Radiation OncologyONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
6.50
自引率
2.80%
发文量
181
审稿时长
3-6 weeks
期刊介绍:
Radiation Oncology encompasses all aspects of research that impacts on the treatment of cancer using radiation. It publishes findings in molecular and cellular radiation biology, radiation physics, radiation technology, and clinical oncology.