{"title":"Bioactive fungal compounds as potential anti-HIV agents against HIV-1 protease: a multi-faceted molecular modelling approach for drug discovery.","authors":"Madhusmita Panda, Priyanka Purohit, Debashis Barik, Jarmani Dansana, Biswa Ranjan Meher","doi":"10.1080/07391102.2024.2333986","DOIUrl":null,"url":null,"abstract":"<p><p>HIV-PR is a prominent pharmacological target that is driving the development of various possible HIV inhibitors. Unfortunately, the viral strain population has evolved to be even more resistant to medications; therefore, studying the dynamic structures of both WT and mutant viruses, besides their interactions with inhibitors, may be advantageous. Molecular dynamics analyses and free-energy calculations on the WT and four important resistance mutants (V82F, I84V, I50V, and V82F/I84V) of HIV-PR complexed with fungal compounds were performed to completely examine the mechanism of HIV-PR drug resistance. To determine precise binding free energies, we utilized an MM/GBSA method based on molecular mechanics. In this study, we found that compared to WT and single mutants, the double mutant (V82F/I84V) exhibited less flexibility and less curling of the flap tips. Contradiction with prior studies, our data reveal that the double mutant (V82F/I84V) facilitates binding affinity, suggesting that this variant may be particularly well suited to Ganomycin-I. The energy decomposition study shows that an increase in E<sub>vdw</sub> energy by 6.56 kcal/mol is responsible for much of the increased binding observed for the double mutant (V82F/I84V) HIV-PR, which plays a direct role in increasing the binding affinity by approximately -1.62 (Val82' to Phe82') and -1.08 (Ile84' to Val84') kcal/mol, accounts for 41% of the total gain of the binding affinity. In addition to the direct impacts of Phe82' and Val84', the residues Gly27, Ala28, Asp29, Asp30, Ile47, and Ile50 each contribute more than -1 kcal/mol to the enhanced binding affinity of (V82F/I84V) HIV-PR towards the inhibitor.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-23"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2333986","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
HIV-PR is a prominent pharmacological target that is driving the development of various possible HIV inhibitors. Unfortunately, the viral strain population has evolved to be even more resistant to medications; therefore, studying the dynamic structures of both WT and mutant viruses, besides their interactions with inhibitors, may be advantageous. Molecular dynamics analyses and free-energy calculations on the WT and four important resistance mutants (V82F, I84V, I50V, and V82F/I84V) of HIV-PR complexed with fungal compounds were performed to completely examine the mechanism of HIV-PR drug resistance. To determine precise binding free energies, we utilized an MM/GBSA method based on molecular mechanics. In this study, we found that compared to WT and single mutants, the double mutant (V82F/I84V) exhibited less flexibility and less curling of the flap tips. Contradiction with prior studies, our data reveal that the double mutant (V82F/I84V) facilitates binding affinity, suggesting that this variant may be particularly well suited to Ganomycin-I. The energy decomposition study shows that an increase in Evdw energy by 6.56 kcal/mol is responsible for much of the increased binding observed for the double mutant (V82F/I84V) HIV-PR, which plays a direct role in increasing the binding affinity by approximately -1.62 (Val82' to Phe82') and -1.08 (Ile84' to Val84') kcal/mol, accounts for 41% of the total gain of the binding affinity. In addition to the direct impacts of Phe82' and Val84', the residues Gly27, Ala28, Asp29, Asp30, Ile47, and Ile50 each contribute more than -1 kcal/mol to the enhanced binding affinity of (V82F/I84V) HIV-PR towards the inhibitor.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.