Microbial Community Shifts and Nitrogen Utilization in Peritidal Microbialites: The Role of Salinity and pH in Microbially Induced Carbonate Precipitation.
Yunli Eric Hsieh, Sung-Yin Yang, Shao-Lun Liu, Shih-Wei Wang, Wei-Lung Wang, Sen-Lin Tang, Shan-Hua Yang
{"title":"Microbial Community Shifts and Nitrogen Utilization in Peritidal Microbialites: The Role of Salinity and pH in Microbially Induced Carbonate Precipitation.","authors":"Yunli Eric Hsieh, Sung-Yin Yang, Shao-Lun Liu, Shih-Wei Wang, Wei-Lung Wang, Sen-Lin Tang, Shan-Hua Yang","doi":"10.1007/s00248-025-02532-1","DOIUrl":null,"url":null,"abstract":"<p><p>Microbialites have the potential to record environmental changes and act as biosignatures of past geochemical conditions. As such, they could be used as indicators to decipher ancient rock records. Modern microbialites are primarily found in environments where competitors and destructors are absent or where biogeochemical conditions favor their continuous formation. Many previous studies have essentially focused on the role of photosynthetic microbes in controlling pH and carbonate speciation and potentially overlooked alternative non-photosynthetic pathways of carbonate precipitation. Given that microbial activity induces subtle geochemical changes, microbially induced carbonate precipitation (MICP) can involve several mechanisms, from extracellular polymeric substances (EPS), sulfate reduction, anaerobic oxidation of methane, to nitrogen cycling processes, such as ammonification, ureolysis, and denitrification. Moreover, the peritidal zone where temperate microbialites are mostly found today, is under the influence of both freshwater and seawater, arguing for successive biogeochemical processes leading to mineral saturation, and questioning interpretations of fossil records. This study investigates microbialites in three tide pools from the peritidal zone of Fongchueisha, Hengchun, Taiwan, to address the influence of salinity on microbial community composition and carbonate precipitation mechanisms. Microbial samples were collected across varying salinity gradients at multiple time points and analyzed using next-generation sequencing (NGS) of bacterial 16S and eukaryotic 18S rRNA genes. Our results indicate that dominant bacterial groups, including Cyanobacteria and Alphaproteobacteria, were largely influenced by salinity variations, albeit pH exhibited stronger correlation with community composition. Combining our results on geochemistry and taxonomic diversity over time, we inferred a shift in the trophic mode under high salinity conditions, during which the use of urea and amino acids as a nitrogen source outcompetes diazotrophy, ureolysis and ammonification of amino acids reinforcing carbonate precipitation dynamics by triggering an increase in both pH and dissolved inorganic carbon.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"31"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02532-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbialites have the potential to record environmental changes and act as biosignatures of past geochemical conditions. As such, they could be used as indicators to decipher ancient rock records. Modern microbialites are primarily found in environments where competitors and destructors are absent or where biogeochemical conditions favor their continuous formation. Many previous studies have essentially focused on the role of photosynthetic microbes in controlling pH and carbonate speciation and potentially overlooked alternative non-photosynthetic pathways of carbonate precipitation. Given that microbial activity induces subtle geochemical changes, microbially induced carbonate precipitation (MICP) can involve several mechanisms, from extracellular polymeric substances (EPS), sulfate reduction, anaerobic oxidation of methane, to nitrogen cycling processes, such as ammonification, ureolysis, and denitrification. Moreover, the peritidal zone where temperate microbialites are mostly found today, is under the influence of both freshwater and seawater, arguing for successive biogeochemical processes leading to mineral saturation, and questioning interpretations of fossil records. This study investigates microbialites in three tide pools from the peritidal zone of Fongchueisha, Hengchun, Taiwan, to address the influence of salinity on microbial community composition and carbonate precipitation mechanisms. Microbial samples were collected across varying salinity gradients at multiple time points and analyzed using next-generation sequencing (NGS) of bacterial 16S and eukaryotic 18S rRNA genes. Our results indicate that dominant bacterial groups, including Cyanobacteria and Alphaproteobacteria, were largely influenced by salinity variations, albeit pH exhibited stronger correlation with community composition. Combining our results on geochemistry and taxonomic diversity over time, we inferred a shift in the trophic mode under high salinity conditions, during which the use of urea and amino acids as a nitrogen source outcompetes diazotrophy, ureolysis and ammonification of amino acids reinforcing carbonate precipitation dynamics by triggering an increase in both pH and dissolved inorganic carbon.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.