{"title":"In Vivo Reprogramming Highlights Epigenetic Regulation That Shapes Cancer Hallmarks.","authors":"Yosuke Yamada, Nao Sankoda, Yasuhiro Yamada","doi":"10.1111/cas.70067","DOIUrl":null,"url":null,"abstract":"<p><p>Douglas Hanahan added \"non-mutational epigenetic reprogramming\" and \"unlocking phenotypic plasticity\" as new hallmarks of cancer, proposing that cancer cells possess fundamental features that are not directly linked to their genetic abnormalities. In vivo reprogramming studies have demonstrated that non-mutational epigenetic regulation can cause cellular reprogramming, leading to cancer development at the organismal level. Given that epigenetic regulation functions as an interface between the cellular environment and gene expression, these results suggest that intercellular communications in the tumor microenvironment play a critical role in cancer development. This review first introduces genetic aberrations that cause cancer development. Then, it illustrates the impact of epigenetic abnormalities in cancer, especially with reference to studies that use in vivo reprogramming technologies. Finally, it discusses the importance of histological evaluations of tumor tissue to understand non-cell-autonomous epigenetic regulation that establishes cancer hallmarks.</p>","PeriodicalId":48943,"journal":{"name":"Cancer Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cas.70067","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Douglas Hanahan added "non-mutational epigenetic reprogramming" and "unlocking phenotypic plasticity" as new hallmarks of cancer, proposing that cancer cells possess fundamental features that are not directly linked to their genetic abnormalities. In vivo reprogramming studies have demonstrated that non-mutational epigenetic regulation can cause cellular reprogramming, leading to cancer development at the organismal level. Given that epigenetic regulation functions as an interface between the cellular environment and gene expression, these results suggest that intercellular communications in the tumor microenvironment play a critical role in cancer development. This review first introduces genetic aberrations that cause cancer development. Then, it illustrates the impact of epigenetic abnormalities in cancer, especially with reference to studies that use in vivo reprogramming technologies. Finally, it discusses the importance of histological evaluations of tumor tissue to understand non-cell-autonomous epigenetic regulation that establishes cancer hallmarks.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.