Katrina Li, Brandon Mathew, Ethan Saldanha, Puja Ghosh, Adrian R Krainer, Srinivasan Dasarathy, Hai Huang, Xiyan Xiang, Lopa Mishra
{"title":"New insights into biomarkers and risk stratification to predict hepatocellular cancer.","authors":"Katrina Li, Brandon Mathew, Ethan Saldanha, Puja Ghosh, Adrian R Krainer, Srinivasan Dasarathy, Hai Huang, Xiyan Xiang, Lopa Mishra","doi":"10.1186/s10020-025-01194-6","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is the third major cause of cancer death worldwide, with more than a doubling of incidence over the past two decades in the United States. Yet, the survival rate remains less than 20%, often due to late diagnosis at advanced stages. Current HCC screening approaches are serum alpha-fetoprotein (AFP) testing and ultrasound (US) of cirrhotic patients. However, these remain suboptimal, particularly in the setting of underlying obesity and metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), which are also rising in incidence. Therefore, there is an urgent need for novel biomarkers that can stratify risk and predict early diagnosis of HCC, which is curable. Advances in liver cancer biology, multi-omics technologies, artificial intelligence, and precision algorithms have facilitated the development of promising candidates, with several emerging from completed phase 2 and 3 clinical trials. This review highlights the performance of these novel biomarkers and algorithms from a mechanistic perspective and provides new insight into how pathological processes can be detected through blood-based biomarkers. Through human studies compiled with animal models and mechanistic insight in pathways such as the TGF-β pathway, the biological progression from chronic liver disease to cirrhosis and HCC can be delineated. This integrated approach with new biomarkers merit further validation to refine HCC screening and improve early detection and risk stratification.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"152"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01194-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is the third major cause of cancer death worldwide, with more than a doubling of incidence over the past two decades in the United States. Yet, the survival rate remains less than 20%, often due to late diagnosis at advanced stages. Current HCC screening approaches are serum alpha-fetoprotein (AFP) testing and ultrasound (US) of cirrhotic patients. However, these remain suboptimal, particularly in the setting of underlying obesity and metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH), which are also rising in incidence. Therefore, there is an urgent need for novel biomarkers that can stratify risk and predict early diagnosis of HCC, which is curable. Advances in liver cancer biology, multi-omics technologies, artificial intelligence, and precision algorithms have facilitated the development of promising candidates, with several emerging from completed phase 2 and 3 clinical trials. This review highlights the performance of these novel biomarkers and algorithms from a mechanistic perspective and provides new insight into how pathological processes can be detected through blood-based biomarkers. Through human studies compiled with animal models and mechanistic insight in pathways such as the TGF-β pathway, the biological progression from chronic liver disease to cirrhosis and HCC can be delineated. This integrated approach with new biomarkers merit further validation to refine HCC screening and improve early detection and risk stratification.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.