{"title":"Assessing Structural Classification Using AlphaFold2 Models Through ECOD-Based Comparative Analysis.","authors":"Takeshi Kawabata, Kengo Kinoshita","doi":"10.1002/prot.26828","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying homologous proteins is a fundamental task in structural bioinformatics. While AlphaFold2 has revolutionized protein structure prediction, the extent to which structure comparison of its models can reliably detect homologs remains unclear. In this study, we evaluate the feasibility of homology detection using AlphaFold2-predicted structures through structural comparisons. We considered the classification of the ECOD database for experimental structures as the correct standard and obtained their corresponding predicted models from AlphaFoldDB. To ensure blind assessment, we divided the structures into test and train sets according to their release date. Predicted and experimental 3D structures in the test and train sets were compared using 3D structure comparisons (MATRAS, Dali, and Foldseek) and sequence comparisons (BLAST and HHsearch). The results were evaluated based on the homology annotations in the ECOD database. For top-1 accuracy, the performance of structural comparisons was comparable to that of HHsearch. However, when considering metrics that included all structural pairs, including more remote homology, structural comparisons outperformed HHsearch. No significant differences were observed between comparisons of experimental versus experimental, predicted versus experimental, and predicted versus predicted structures with pLDDT (prediction confidence) values greater than 60. We also demonstrate that predicted protein structures, determined by NMR, had lower pLDDT values and contained fewer coils than their experimental counterparts. These findings highlight the potential of AlphaFold2 models in structural classification and suggest that 3D structural searches should be conducted not only against the PDB but also against AlphaFoldDB to identify more potential homologs.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.26828","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying homologous proteins is a fundamental task in structural bioinformatics. While AlphaFold2 has revolutionized protein structure prediction, the extent to which structure comparison of its models can reliably detect homologs remains unclear. In this study, we evaluate the feasibility of homology detection using AlphaFold2-predicted structures through structural comparisons. We considered the classification of the ECOD database for experimental structures as the correct standard and obtained their corresponding predicted models from AlphaFoldDB. To ensure blind assessment, we divided the structures into test and train sets according to their release date. Predicted and experimental 3D structures in the test and train sets were compared using 3D structure comparisons (MATRAS, Dali, and Foldseek) and sequence comparisons (BLAST and HHsearch). The results were evaluated based on the homology annotations in the ECOD database. For top-1 accuracy, the performance of structural comparisons was comparable to that of HHsearch. However, when considering metrics that included all structural pairs, including more remote homology, structural comparisons outperformed HHsearch. No significant differences were observed between comparisons of experimental versus experimental, predicted versus experimental, and predicted versus predicted structures with pLDDT (prediction confidence) values greater than 60. We also demonstrate that predicted protein structures, determined by NMR, had lower pLDDT values and contained fewer coils than their experimental counterparts. These findings highlight the potential of AlphaFold2 models in structural classification and suggest that 3D structural searches should be conducted not only against the PDB but also against AlphaFoldDB to identify more potential homologs.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.