Yi Zhu, Xiaoman He, Xiaojing Ma, Yan Zhang, Wei Feng
{"title":"O-GlcNAcylation of FBP1 promotes pancreatic cancer progression by facilitating its Lys48-linked polyubiquitination in hypoxic environments.","authors":"Yi Zhu, Xiaoman He, Xiaojing Ma, Yan Zhang, Wei Feng","doi":"10.1038/s41389-025-00555-4","DOIUrl":null,"url":null,"abstract":"<p><p>Fructose-1,6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, is important for cancer progression. The post-translational regulation of FBP1 in hypoxic environments is still unclear. Here, we report that FBP1 is down-regulated, and a low expression level of FBP1 predicts a poor prognosis in pancreatic cancer. A hypoxic environment makes FBP1 more prone to degradation, and this effect can be reversed by inhibiting global O-GlcNAcylation signalling. O-linked N-acetylglucosamine transferase (OGT) interacts with FBP1 and induces its O-GlcNAcylation at serine 47 residue (FBP1-S47) to modulate its protein function in pancreatic cancer cells. O-GlcNAcylation of FBP1-S47 promotes FBP1 degradation and also influences the expression of canonical HIF-1α target genes involved in glucose metabolism, resulting in an increase in glucose uptake and lactate secretion in pancreatic cancer cells. In addition, O-GlcNAcylation of FBP1-S47 facilitates FBP1 K48-linked polyubiquitination at lysine 51 residue (FBP1-K51), in which GlcNAc moiety can serve as a prerequisite for an FBP1 ubiquitin ligase. FBP1 (K51) K48-linked polyubiquitination mediated protein degradation can also promote cancer progression, similarly to the O-GlcNAcylation of FBP1-S47. Our data uncover a mechanism whereby FBP1 can be regulated by a protein O-GlcNAcylation-polyubiquitination axis, paving the way to cancer cell metabolic reprogramming.</p>","PeriodicalId":19489,"journal":{"name":"Oncogenesis","volume":"14 1","pages":"11"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015445/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41389-025-00555-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fructose-1,6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, is important for cancer progression. The post-translational regulation of FBP1 in hypoxic environments is still unclear. Here, we report that FBP1 is down-regulated, and a low expression level of FBP1 predicts a poor prognosis in pancreatic cancer. A hypoxic environment makes FBP1 more prone to degradation, and this effect can be reversed by inhibiting global O-GlcNAcylation signalling. O-linked N-acetylglucosamine transferase (OGT) interacts with FBP1 and induces its O-GlcNAcylation at serine 47 residue (FBP1-S47) to modulate its protein function in pancreatic cancer cells. O-GlcNAcylation of FBP1-S47 promotes FBP1 degradation and also influences the expression of canonical HIF-1α target genes involved in glucose metabolism, resulting in an increase in glucose uptake and lactate secretion in pancreatic cancer cells. In addition, O-GlcNAcylation of FBP1-S47 facilitates FBP1 K48-linked polyubiquitination at lysine 51 residue (FBP1-K51), in which GlcNAc moiety can serve as a prerequisite for an FBP1 ubiquitin ligase. FBP1 (K51) K48-linked polyubiquitination mediated protein degradation can also promote cancer progression, similarly to the O-GlcNAcylation of FBP1-S47. Our data uncover a mechanism whereby FBP1 can be regulated by a protein O-GlcNAcylation-polyubiquitination axis, paving the way to cancer cell metabolic reprogramming.
期刊介绍:
Oncogenesis is a peer-reviewed open access online journal that publishes full-length papers, reviews, and short communications exploring the molecular basis of cancer and related phenomena. It seeks to promote diverse and integrated areas of molecular biology, cell biology, oncology, and genetics.