Meghan J Brady, Anjali Gupta, Jonathan I Gent, Kyle W Swentowsky, Robert L Unckless, R Kelly Dawe
{"title":"Conflicting kinesin-14s in a single chromosomal drive haplotype.","authors":"Meghan J Brady, Anjali Gupta, Jonathan I Gent, Kyle W Swentowsky, Robert L Unckless, R Kelly Dawe","doi":"10.1093/genetics/iyaf091","DOIUrl":null,"url":null,"abstract":"<p><p>In maize, there are two meiotic drive systems that target large heterochromatic knobs composed of tandem repeats known as knob180 and TR-1. The first meiotic drive haplotype, Abnormal chromosome 10 (Ab10) confers strong meiotic drive (∼75% transmission as a heterozygote) and encodes two kinesins: KINDR, which associates with knob180 repeats and TRKIN, which associates with TR-1 repeats. Prior data show that meiotic drive is conferred primarily by the KINDR/knob180 system while the TRKIN/TR-1 system seems to have little or no role, making it unclear why Trkin has been maintained in Ab10 haplotypes. The second meiotic drive haplotype, K10L2, confers a low level of meiotic drive (∼51-52%) and only encodes the TRKIN/TR-1 system. Here we used long-read sequencing to assemble the K10L2 haplotype and showed that it has strong homology to an internal portion of the Ab10 haplotype. We also carried out CRISPR mutagenesis to test the role of Trkin on Ab10 and K10L2. The data indicate that the Trkin gene on Ab10 does not improve drive or fitness but instead has a weak deleterious effect when paired with a normal chromosome 10. The deleterious effect is more severe when Ab10 is paired with K10L2: in this context functional Trkin on either chromosome nearly abolishes Ab10 drive. Mathematical modeling based on the empirical data suggest that Trkin is unlikely to persist on Ab10. We conclude that Trkin either confers an advantage to Ab10 in untested circumstances or that it is in the process of being purged from the Ab10 population.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf091","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
In maize, there are two meiotic drive systems that target large heterochromatic knobs composed of tandem repeats known as knob180 and TR-1. The first meiotic drive haplotype, Abnormal chromosome 10 (Ab10) confers strong meiotic drive (∼75% transmission as a heterozygote) and encodes two kinesins: KINDR, which associates with knob180 repeats and TRKIN, which associates with TR-1 repeats. Prior data show that meiotic drive is conferred primarily by the KINDR/knob180 system while the TRKIN/TR-1 system seems to have little or no role, making it unclear why Trkin has been maintained in Ab10 haplotypes. The second meiotic drive haplotype, K10L2, confers a low level of meiotic drive (∼51-52%) and only encodes the TRKIN/TR-1 system. Here we used long-read sequencing to assemble the K10L2 haplotype and showed that it has strong homology to an internal portion of the Ab10 haplotype. We also carried out CRISPR mutagenesis to test the role of Trkin on Ab10 and K10L2. The data indicate that the Trkin gene on Ab10 does not improve drive or fitness but instead has a weak deleterious effect when paired with a normal chromosome 10. The deleterious effect is more severe when Ab10 is paired with K10L2: in this context functional Trkin on either chromosome nearly abolishes Ab10 drive. Mathematical modeling based on the empirical data suggest that Trkin is unlikely to persist on Ab10. We conclude that Trkin either confers an advantage to Ab10 in untested circumstances or that it is in the process of being purged from the Ab10 population.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.