Qilin Han, Ying Zhou, Zixian Dong, Weitao Wang, Menghan Wang, Mengyang Pang, Xinyue Song, Bo Chen, Ang Zheng
{"title":"SNORA47 affects stemness and chemotherapy sensitivity via EBF3/RPL11/c-Myc axis in luminal A breast cancer.","authors":"Qilin Han, Ying Zhou, Zixian Dong, Weitao Wang, Menghan Wang, Mengyang Pang, Xinyue Song, Bo Chen, Ang Zheng","doi":"10.1186/s10020-025-01216-3","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy sensitivity is an important factor that restricts the prognosis of breast cancer, and breast cancer stem cells (BCSCs) are the root cause of chemotherapy sensitivity. SNORA47, a member of the small nucleolar RNAs, has not been documented in the context of breast cancer, although it has been reported in lung cancer. In this study, high SNORA47 expression was linked to unfavorable survival outcomes among patients with Luminal A breast cancer in The Cancer Genome Atlas (TCGA). Among Luminal A patients, an elevated expression of SNORA47 correlated with high TNM stage (P = 0.049). SNORA47 was strongly associated with breast cancer stemness phenotype and tumor sensitivity in vivo and in vitro. Our findings demonstrated that SNORA47, through its interaction with early B-cell factor 3(EBF3), facilitated the translocation of ribosomal protein L11(RPL11), which as a modulator that subsequently regulates the expression levels of the oncogene c-Myc. These discoveries provided novel insights into the molecular mechanisms of breast cancer progression and suggested potential therapeutic targets for overcoming drug sensitivity by disrupting the SNORA47-EBF3-RPL11 axis.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"150"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12016144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01216-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemotherapy sensitivity is an important factor that restricts the prognosis of breast cancer, and breast cancer stem cells (BCSCs) are the root cause of chemotherapy sensitivity. SNORA47, a member of the small nucleolar RNAs, has not been documented in the context of breast cancer, although it has been reported in lung cancer. In this study, high SNORA47 expression was linked to unfavorable survival outcomes among patients with Luminal A breast cancer in The Cancer Genome Atlas (TCGA). Among Luminal A patients, an elevated expression of SNORA47 correlated with high TNM stage (P = 0.049). SNORA47 was strongly associated with breast cancer stemness phenotype and tumor sensitivity in vivo and in vitro. Our findings demonstrated that SNORA47, through its interaction with early B-cell factor 3(EBF3), facilitated the translocation of ribosomal protein L11(RPL11), which as a modulator that subsequently regulates the expression levels of the oncogene c-Myc. These discoveries provided novel insights into the molecular mechanisms of breast cancer progression and suggested potential therapeutic targets for overcoming drug sensitivity by disrupting the SNORA47-EBF3-RPL11 axis.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.