Detecting homologous recombination deficiency for breast cancer through integrative analysis of genomic data.

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Rong Zhu, Katherine Eason, Suet-Feung Chin, Paul A W Edwards, Raquel Manzano Garcia, Richard Moulange, Jia Wern Pan, Soo Hwang Teo, Sach Mukherjee, Maurizio Callari, Carlos Caldas, Stephen-John Sammut, Oscar M Rueda
{"title":"Detecting homologous recombination deficiency for breast cancer through integrative analysis of genomic data.","authors":"Rong Zhu, Katherine Eason, Suet-Feung Chin, Paul A W Edwards, Raquel Manzano Garcia, Richard Moulange, Jia Wern Pan, Soo Hwang Teo, Sach Mukherjee, Maurizio Callari, Carlos Caldas, Stephen-John Sammut, Oscar M Rueda","doi":"10.1002/1878-0261.70041","DOIUrl":null,"url":null,"abstract":"<p><p>Homologous recombination deficiency (HRD) leads to genomic instability, and patients with HRD can benefit from HRD-targeting therapies. Previous studies have primarily focused on identifying HRD biomarkers using data from a single technology. Here we integrated features from different genomic data types, including total copy number (CN), allele-specific copy number (ASCN) and single nucleotide variants (SNV). Using a semi-supervised method, we developed HRD classifiers from 1404 breast tumours across two datasets based on their BRCA1/2 status, demonstrating improved HRD identification when aggregating different data types. Notably, HRD-positive tumours in ER-negative disease showed improved survival post-adjuvant chemotherapy, while HRD status strongly correlated with neoadjuvant treatment response. Furthermore, our analysis of cell lines highlighted a sensitivity to PARP inhibitors, particularly rucaparib, among predicted HRD-positive lines. Exploring somatic mutations outside BRCA1/2, we confirmed variants in several genes associated with HRD. Our method for HRD classification can adapt to different data types or resolutions and can be used in various scenarios to help refine patient selection for HRD-targeting therapies that might lead to better clinical outcomes.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Homologous recombination deficiency (HRD) leads to genomic instability, and patients with HRD can benefit from HRD-targeting therapies. Previous studies have primarily focused on identifying HRD biomarkers using data from a single technology. Here we integrated features from different genomic data types, including total copy number (CN), allele-specific copy number (ASCN) and single nucleotide variants (SNV). Using a semi-supervised method, we developed HRD classifiers from 1404 breast tumours across two datasets based on their BRCA1/2 status, demonstrating improved HRD identification when aggregating different data types. Notably, HRD-positive tumours in ER-negative disease showed improved survival post-adjuvant chemotherapy, while HRD status strongly correlated with neoadjuvant treatment response. Furthermore, our analysis of cell lines highlighted a sensitivity to PARP inhibitors, particularly rucaparib, among predicted HRD-positive lines. Exploring somatic mutations outside BRCA1/2, we confirmed variants in several genes associated with HRD. Our method for HRD classification can adapt to different data types or resolutions and can be used in various scenarios to help refine patient selection for HRD-targeting therapies that might lead to better clinical outcomes.

通过基因组数据的综合分析检测乳腺癌同源重组缺陷。
同源重组缺陷(HRD)导致基因组不稳定,HRD患者可以从HRD靶向治疗中获益。以前的研究主要集中在利用单一技术的数据识别HRD生物标志物。在这里,我们整合了不同基因组数据类型的特征,包括总拷贝数(CN)、等位基因特异性拷贝数(ASCN)和单核苷酸变异(SNV)。使用半监督方法,我们基于BRCA1/2状态从两个数据集中的1404个乳腺肿瘤中开发了HRD分类器,证明了在聚合不同数据类型时改进了HRD识别。值得注意的是,在er阴性疾病中,HRD阳性肿瘤在辅助化疗后生存率提高,而HRD状态与新辅助治疗反应密切相关。此外,我们对细胞系的分析强调了在预测的hrd阳性细胞系中对PARP抑制剂的敏感性,特别是rucaparib。在探索BRCA1/2以外的体细胞突变时,我们证实了几个与HRD相关的基因变异。我们的HRD分类方法可以适应不同的数据类型或分辨率,并可在各种情况下使用,以帮助改进患者对HRD靶向治疗的选择,从而可能导致更好的临床结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信