Lauren Gluck, Brittany Gerstein, Ulrike W Kaunzner
{"title":"Repair mechanisms of the central nervous system: From axon sprouting to remyelination.","authors":"Lauren Gluck, Brittany Gerstein, Ulrike W Kaunzner","doi":"10.1016/j.neurot.2025.e00583","DOIUrl":null,"url":null,"abstract":"<p><p>The central nervous system (CNS), comprising the brain, spinal cord, and optic nerve, has limited regenerative capacity, posing significant challenges in treating neurological disorders. Recent advances in neuroscience and neurotherapeutics have introduced promising strategies to stimulate CNS repair, particularly in the context of neurodegenerative diseases such as multiple sclerosis. This review explores the complex interplay between inflammation, demyelination, and remyelination possibilities. Glial cells, including oligodendrocyte precursors, oligodendrocytes, astrocytes and microglia play dual roles in injury response, with reactive gliosis promoting repair but also potentially inhibiting recovery through glial scar formation. There is also an emphasis on axonal regeneration, axonal sprouting and stem cell therapies. We highlight the role of neuroplasticity in recovery post-injury and the limited regenerative potential of axons in the CNS due to inhibitory factors such as myelin-associated inhibitors. Moreover, neurotrophic factors support neuronal survival and axonal growth, while stem cell-based approaches offer promise for replacing lost neurons and glial cells. However, challenges such as stem cell survival, integration, and risk of tumor formation remain. Furthermore, we examine the role of neurogenesis in CNS repair and the remodeling of the extracellular matrix, which can facilitate regeneration. Through these diverse mechanisms, ongoing research aims to overcome the intrinsic and extrinsic barriers to CNS repair and advance therapeutic strategies for neurological diseases.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00583"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2025.e00583","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The central nervous system (CNS), comprising the brain, spinal cord, and optic nerve, has limited regenerative capacity, posing significant challenges in treating neurological disorders. Recent advances in neuroscience and neurotherapeutics have introduced promising strategies to stimulate CNS repair, particularly in the context of neurodegenerative diseases such as multiple sclerosis. This review explores the complex interplay between inflammation, demyelination, and remyelination possibilities. Glial cells, including oligodendrocyte precursors, oligodendrocytes, astrocytes and microglia play dual roles in injury response, with reactive gliosis promoting repair but also potentially inhibiting recovery through glial scar formation. There is also an emphasis on axonal regeneration, axonal sprouting and stem cell therapies. We highlight the role of neuroplasticity in recovery post-injury and the limited regenerative potential of axons in the CNS due to inhibitory factors such as myelin-associated inhibitors. Moreover, neurotrophic factors support neuronal survival and axonal growth, while stem cell-based approaches offer promise for replacing lost neurons and glial cells. However, challenges such as stem cell survival, integration, and risk of tumor formation remain. Furthermore, we examine the role of neurogenesis in CNS repair and the remodeling of the extracellular matrix, which can facilitate regeneration. Through these diverse mechanisms, ongoing research aims to overcome the intrinsic and extrinsic barriers to CNS repair and advance therapeutic strategies for neurological diseases.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.