Hilary A Kenny, Carman Ka Man Ip, Lucy Kelliher, Tejas Samantaray, Kasjusz Kordylewicz, Rachael Hoffmann, Sarah Rauch, Beatrice Malacrida, Sophie L P Skingsley, Frances R Balkwill, Chiara Battistini, Ugo Cavallaro, Wolf R Wiedemeyer, Ernst Lengyel
{"title":"Navitoclax, a Bcl-2/xL Inhibitor, and YM155, a Survivin Inhibitor, in Combination with Carboplatin, Effectively Inhibit Ovarian Cancer Tumor Growth.","authors":"Hilary A Kenny, Carman Ka Man Ip, Lucy Kelliher, Tejas Samantaray, Kasjusz Kordylewicz, Rachael Hoffmann, Sarah Rauch, Beatrice Malacrida, Sophie L P Skingsley, Frances R Balkwill, Chiara Battistini, Ugo Cavallaro, Wolf R Wiedemeyer, Ernst Lengyel","doi":"10.1158/1535-7163.MCT-23-0863","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade serous ovarian cancer is generally treated with upfront chemotherapy, including carboplatin. The persistence of platinum-resistant cells drives recurrent disease. A high-throughput screen using a 3D organotypic culture assembled with extracellular matrix, primary human fibroblasts, and mesothelial cells was established and validated. Using a library of FDA-approved drugs, the 3D high-throughput screen was performed with the goal of identifying a combination of drugs that synergistically target two populations of ovarian cancer: aldehyde dehydrogenase (ALDH) high (ALDHhi) and ALDH low (ALDHlo) enzyme activity cells, which are less sensitive to carboplatin treatment than the bulk ovarian cancer cells. Initial results showed that omipalisib, verteporfin, CA3, mitoxantrone, navitoclax, venetoclax, and YM155 had significant single-drug activity in either the ALDHlo or both the ALDHlo/ALDHhi cell populations. Synergistic drug activity was identified with three drug combinations: navitoclax/omipalisib, navitoclax/YM155, and YM155/omipalisib. In vitro, the combination of navitoclax/YM155 was most efficient at blocking primary human ovarian cancer sphere formation and the proliferation of four different ovarian cancer cell lines in the 3D organotypic culture. In vivo, the combination of navitoclax/YM155/carboplatin decreased ovarian cancer metastasis, decreased the percentage of ALDHhi ovarian cancer cells in tumors, and increased survival when compared with carboplatin treatment alone in xenograft models. Our results suggest that the combination of navitoclax/YM155/carboplatin has promise as a therapy for treating ovarian cancer.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"OF1-OF13"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0863","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-grade serous ovarian cancer is generally treated with upfront chemotherapy, including carboplatin. The persistence of platinum-resistant cells drives recurrent disease. A high-throughput screen using a 3D organotypic culture assembled with extracellular matrix, primary human fibroblasts, and mesothelial cells was established and validated. Using a library of FDA-approved drugs, the 3D high-throughput screen was performed with the goal of identifying a combination of drugs that synergistically target two populations of ovarian cancer: aldehyde dehydrogenase (ALDH) high (ALDHhi) and ALDH low (ALDHlo) enzyme activity cells, which are less sensitive to carboplatin treatment than the bulk ovarian cancer cells. Initial results showed that omipalisib, verteporfin, CA3, mitoxantrone, navitoclax, venetoclax, and YM155 had significant single-drug activity in either the ALDHlo or both the ALDHlo/ALDHhi cell populations. Synergistic drug activity was identified with three drug combinations: navitoclax/omipalisib, navitoclax/YM155, and YM155/omipalisib. In vitro, the combination of navitoclax/YM155 was most efficient at blocking primary human ovarian cancer sphere formation and the proliferation of four different ovarian cancer cell lines in the 3D organotypic culture. In vivo, the combination of navitoclax/YM155/carboplatin decreased ovarian cancer metastasis, decreased the percentage of ALDHhi ovarian cancer cells in tumors, and increased survival when compared with carboplatin treatment alone in xenograft models. Our results suggest that the combination of navitoclax/YM155/carboplatin has promise as a therapy for treating ovarian cancer.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.