Rona Karahoda, Therina Du Toit, Barbara Fuenzalida, Sampada Kallol, Michael Groessl, Pascale Anderle, Edgar Ontsouka, Frantisek Staud, Christa E Flueck, Christiane Albrecht
{"title":"Landscape of Steroid Dynamics in Pregnancy: Insights From the Maternal-Placental-Fetal Unit and Placental Models.","authors":"Rona Karahoda, Therina Du Toit, Barbara Fuenzalida, Sampada Kallol, Michael Groessl, Pascale Anderle, Edgar Ontsouka, Frantisek Staud, Christa E Flueck, Christiane Albrecht","doi":"10.1016/j.mcpro.2025.100976","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in analytical methods have revolutionized our understanding of steroid biochemistry. The emergence of novel steroids such as 11-oxy androgens and 11-oxy progesterones has necessitated a reevaluation of steroid biosynthesis and metabolism within the maternal-placental-fetal unit. In this study, we employed a validated liquid chromatography high-resolution mass spectrometry method to quantify 51 steroids in paired maternal serum, neonatal serum, and placenta samples from 37 healthy pregnancies. Additionally, we characterized steroid release in various placental models, including human placenta perfusion, explants, and primary trophoblast cells isolated from human term placenta. Our findings emphasize the predominance of keto derivatives of androgens in the placenta compared to hydroxylated forms, which are dominant in maternal serum and neonatal serum. We also observed high levels of classic and novel progesterones in the placenta and across all models, with significant release on the maternal side. These results suggest that the placenta possesses an active enzymatic machinery capable of producing and metabolizing novel progesterones. Furthermore, we demonstrated that the catalytic activity of 11β-hydroxysteroid dehydrogenase type 2 extends beyond cortisol regulation to hydroxylated androgens, highlighting its significance in the broader context of steroid metabolism within the maternal-placental-fetal unit. These findings contribute to our understanding of placental physiology and impact on fetal development.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100976"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100976","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in analytical methods have revolutionized our understanding of steroid biochemistry. The emergence of novel steroids such as 11-oxy androgens and 11-oxy progesterones has necessitated a reevaluation of steroid biosynthesis and metabolism within the maternal-placental-fetal unit. In this study, we employed a validated liquid chromatography high-resolution mass spectrometry method to quantify 51 steroids in paired maternal serum, neonatal serum, and placenta samples from 37 healthy pregnancies. Additionally, we characterized steroid release in various placental models, including human placenta perfusion, explants, and primary trophoblast cells isolated from human term placenta. Our findings emphasize the predominance of keto derivatives of androgens in the placenta compared to hydroxylated forms, which are dominant in maternal serum and neonatal serum. We also observed high levels of classic and novel progesterones in the placenta and across all models, with significant release on the maternal side. These results suggest that the placenta possesses an active enzymatic machinery capable of producing and metabolizing novel progesterones. Furthermore, we demonstrated that the catalytic activity of 11β-hydroxysteroid dehydrogenase type 2 extends beyond cortisol regulation to hydroxylated androgens, highlighting its significance in the broader context of steroid metabolism within the maternal-placental-fetal unit. These findings contribute to our understanding of placental physiology and impact on fetal development.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes