Deep learning-based hippocampus asymmetry assessment for Alzheimer's disease diagnosis.

Medical physics Pub Date : 2025-04-16 DOI:10.1002/mp.17831
Fan Zhang, Yifan Wang, Xinhong Zhang
{"title":"Deep learning-based hippocampus asymmetry assessment for Alzheimer's disease diagnosis.","authors":"Fan Zhang, Yifan Wang, Xinhong Zhang","doi":"10.1002/mp.17831","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The symmetry of the brain hippocampus may be disrupted by natural aging and neurodegenerative diseases.</p><p><strong>Purpose: </strong>Currently, clinical studies on hippocampus asymmetry are limited to subjective visual evaluation and rough volume measurements, lacking quantitative standards.</p><p><strong>Methods: </strong>This paper proposes a quantitative assessment method of the hippocampus asymmetry based on deep learning, named DeepHAA (Deep Learning-based Hippocampus Asymmetry Assessment). The DeepHAA model extracts feature representations of left and right hippocampus structures in MRI images and achieved feature fusion through a cross-attention mechanism. A quantitative assessment method is proposed based on the distance between the multimodal embedding of the input sample and the reference embedding space.</p><p><strong>Results: </strong>The experimental dataset of this paper included MRI scans of 199 subjects, including 53 normal cognition (NC), 71 mild cognitive impairment (MCI) and 33 Alzheimer's disease (AD). The experimental results show that DeepHAA model can effectively identify and distinguish the NC, MCI, and AD.</p><p><strong>Conclusions: </strong>The proposed deep learning method integrates asymmetric information about hippocampus structure into the diagnosis of AD and has potential clinical application value.</p>","PeriodicalId":94136,"journal":{"name":"Medical physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mp.17831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The symmetry of the brain hippocampus may be disrupted by natural aging and neurodegenerative diseases.

Purpose: Currently, clinical studies on hippocampus asymmetry are limited to subjective visual evaluation and rough volume measurements, lacking quantitative standards.

Methods: This paper proposes a quantitative assessment method of the hippocampus asymmetry based on deep learning, named DeepHAA (Deep Learning-based Hippocampus Asymmetry Assessment). The DeepHAA model extracts feature representations of left and right hippocampus structures in MRI images and achieved feature fusion through a cross-attention mechanism. A quantitative assessment method is proposed based on the distance between the multimodal embedding of the input sample and the reference embedding space.

Results: The experimental dataset of this paper included MRI scans of 199 subjects, including 53 normal cognition (NC), 71 mild cognitive impairment (MCI) and 33 Alzheimer's disease (AD). The experimental results show that DeepHAA model can effectively identify and distinguish the NC, MCI, and AD.

Conclusions: The proposed deep learning method integrates asymmetric information about hippocampus structure into the diagnosis of AD and has potential clinical application value.

基于深度学习的海马不对称性评估在阿尔茨海默病诊断中的应用。
背景:自然衰老和神经退行性疾病可能会破坏大脑海马的对称性。目的:目前临床对海马不对称的研究多局限于主观视觉评价和粗略体积测量,缺乏定量标准。方法:本文提出了一种基于深度学习的海马不对称性定量评估方法,命名为DeepHAA (deep learning -based hippocampus asymmetric assessment)。DeepHAA模型提取MRI图像中左右海马结构的特征表征,并通过交叉注意机制实现特征融合。提出了一种基于输入样本的多模态嵌入与参考嵌入空间之间距离的定量评价方法。结果:本文的实验数据集包括199例受试者的MRI扫描,其中正常认知(NC) 53例,轻度认知障碍(MCI) 71例,阿尔茨海默病(AD) 33例。实验结果表明,DeepHAA模型可以有效地识别和区分NC、MCI和AD。结论:所提出的深度学习方法将海马结构的不对称信息整合到AD的诊断中,具有潜在的临床应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信