{"title":"Uncommon N-Glycan Structures in Anhydrobiotic Tardigrades.","authors":"Hirokazu Yagi, Taiki Saito, Shih-Yun Guu, Nao Yamakawa, Shigeru Shimamura, Sachiko Kondo, Maho Yagi-Utsumi, Ken Takai, Jun-Ichi Furukawa, Yann Guerardel, Kay-Hooi Khoo, Kazuharu Arakawa, Koichi Kato","doi":"10.1016/j.mcpro.2025.100979","DOIUrl":null,"url":null,"abstract":"<p><p>We characterized the N-glycosylation profiles of anhydrobiotic tardigrades, R. varieornatus and H. exemplaris, identifying high-mannose, paucimannose, and complex-type oligosaccharides, while hybrid-type glycans were undetectable. Notably, paucimannose-type oligosaccharides accounted for 39% of the N-glycans in R. varieornatus and 17% in H. exemplaris, with a substantial proportion of them exhibiting fucosylation of the innermost GlcNAc via an α1,6-linkage. This core fucosylation pattern, common to all animals, was observed alongside a distinctive glycosylation signature prominently observed in tardigrades: complex-type glycans lacking galactosylation but containing α1,3-fucosylated GlcNAc at non-reducing termini. This structure was more prevalent in H. exemplaris, with 22 out of 87 identified glycoproteins expressing the Fucα1,3-GlcNAc motif, including eight induced during anhydrobiosis. Key glycoproteins such as Cu/Zn-superoxide dismutase and papilin, implicated in oxidative stress protection and extracellular matrix remodeling, were among those modified. Comparative analyses reveal that non-reducing terminal α1,3-fucosylation in tardigrades is distinct from the mammalian Lewis X antigen and similar structures found in invertebrates, suggesting a unique substrate specificity of fucosyltransferases in these species. Genomic analysis identified homologs of Fut9 and FucTC, indicating potential candidates responsible for this glycosylation pattern. Our findings provide new insights into the molecular mechanisms of glycosylation in tardigrades and its relevance to their extreme stress tolerance.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100979"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100979","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We characterized the N-glycosylation profiles of anhydrobiotic tardigrades, R. varieornatus and H. exemplaris, identifying high-mannose, paucimannose, and complex-type oligosaccharides, while hybrid-type glycans were undetectable. Notably, paucimannose-type oligosaccharides accounted for 39% of the N-glycans in R. varieornatus and 17% in H. exemplaris, with a substantial proportion of them exhibiting fucosylation of the innermost GlcNAc via an α1,6-linkage. This core fucosylation pattern, common to all animals, was observed alongside a distinctive glycosylation signature prominently observed in tardigrades: complex-type glycans lacking galactosylation but containing α1,3-fucosylated GlcNAc at non-reducing termini. This structure was more prevalent in H. exemplaris, with 22 out of 87 identified glycoproteins expressing the Fucα1,3-GlcNAc motif, including eight induced during anhydrobiosis. Key glycoproteins such as Cu/Zn-superoxide dismutase and papilin, implicated in oxidative stress protection and extracellular matrix remodeling, were among those modified. Comparative analyses reveal that non-reducing terminal α1,3-fucosylation in tardigrades is distinct from the mammalian Lewis X antigen and similar structures found in invertebrates, suggesting a unique substrate specificity of fucosyltransferases in these species. Genomic analysis identified homologs of Fut9 and FucTC, indicating potential candidates responsible for this glycosylation pattern. Our findings provide new insights into the molecular mechanisms of glycosylation in tardigrades and its relevance to their extreme stress tolerance.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes