Spatio-functional parcellation of resting state fMRI.

Harshit Parmar, Brian Nutter, Sunanda Mitra, Rodney Long, Sameer Antani
{"title":"Spatio-functional parcellation of resting state fMRI.","authors":"Harshit Parmar, Brian Nutter, Sunanda Mitra, Rodney Long, Sameer Antani","doi":"10.1109/ssiai59505.2024.10508652","DOIUrl":null,"url":null,"abstract":"<p><p>Resting state functional Magnetic Resonance Imaging (rs-fMRI) is used to obtain spontaneous activation within the human brain in the absence of specific tasks. Analysis of the rs-fMRI data required spatially and functionally homogenous parcellation of the whole brain based on underlying temporal fluctuations. Commonly used parcellation schemes have a tradeoff between intra-cluster functional similarity and alignment with anatomical regions. In this article, we present a clustering scheme for rs-fMRI data that obtains spatially and functionally homogenous clusters. Results show that the proposed multistage approach can identify various brain networks. Moreover, the functional homogeneity of the clusters is shown to be better than those found with functional atlas and simple k-means clusters. The spatial homogeneity is shown to be better than Independent Component Analysis (ICA), and simple k-means clusters.</p>","PeriodicalId":89229,"journal":{"name":"Proceedings. IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ssiai59505.2024.10508652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Resting state functional Magnetic Resonance Imaging (rs-fMRI) is used to obtain spontaneous activation within the human brain in the absence of specific tasks. Analysis of the rs-fMRI data required spatially and functionally homogenous parcellation of the whole brain based on underlying temporal fluctuations. Commonly used parcellation schemes have a tradeoff between intra-cluster functional similarity and alignment with anatomical regions. In this article, we present a clustering scheme for rs-fMRI data that obtains spatially and functionally homogenous clusters. Results show that the proposed multistage approach can identify various brain networks. Moreover, the functional homogeneity of the clusters is shown to be better than those found with functional atlas and simple k-means clusters. The spatial homogeneity is shown to be better than Independent Component Analysis (ICA), and simple k-means clusters.

静息状态fMRI的空间功能分割。
静息状态功能磁共振成像(rs-fMRI)用于在没有特定任务的情况下获得人类大脑内的自发激活。rs-fMRI数据的分析需要基于潜在的时间波动对整个大脑进行空间和功能上的均匀分割。常用的分割方案在簇内功能相似性和与解剖区域的对齐之间进行权衡。在本文中,我们提出了一种rs-fMRI数据聚类方案,该方案可获得空间和功能均匀的聚类。结果表明,所提出的多阶段方法可以识别不同的脑网络。此外,与功能图谱和简单k-means聚类相比,聚类的功能均匀性更好。空间均匀性优于独立成分分析(ICA)和简单k-means聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信