Inertial sensor-based heel strike and energy expenditure prediction using a hybrid machine learning approach.

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
DIGITAL HEALTH Pub Date : 2025-04-15 eCollection Date: 2025-01-01 DOI:10.1177/20552076251333375
Kethohalli R Vidyarani, Viswanath Talasila, Raafay Umar, Venkatesan Prem, Ravi Prasad K Jagannath, Gurusiddappa R Prashanth
{"title":"Inertial sensor-based heel strike and energy expenditure prediction using a hybrid machine learning approach.","authors":"Kethohalli R Vidyarani, Viswanath Talasila, Raafay Umar, Venkatesan Prem, Ravi Prasad K Jagannath, Gurusiddappa R Prashanth","doi":"10.1177/20552076251333375","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Gait analysis plays a critical role in healthcare, biomechanics, and sports science, particularly for estimating energy expenditure (EE). This study introduces a hybrid machine learning approach integrating convolutional neural networks (CNNs), long-short-term memory (LSTM) networks, and transfer learning (TL) to estimate volume of oxygen (VO<sub>2</sub>) and detect heel strikes (HS) using data from a single 9-axis inertial measurement unit (IMU).</p><p><strong>Methods: </strong>A clinical-grade VO<sub>2</sub> machine provided reference data for model training. The hybrid model was designed to combine spatial and temporal feature extraction capabilities from CNNs and LSTM networks while leveraging pre-trained weights through TL. The study compared the performance of the hybrid model with an LSTM-only approach to quantify improvements in VO<sub>2</sub> prediction.</p><p><strong>Results: </strong>The hybrid model significantly reduced the VO<sub>2</sub> prediction error from 20% to 3% compared to using LSTM-only approach. Additionally, the model demonstrated high accuracy for HS detection, achieving 93.53% accuracy as indicated by training and validation results. The lightweight IMU-based system proved effective for VO<sub>2</sub> estimation, offering a practical alternative to traditional VO<sub>2</sub> measurement systems, which are often complex, bulky, and uncomfortable for subjects.</p><p><strong>Conclusions: </strong>This study highlights the potential of a hybrid machine learning approach using IMU-based systems for accurate VO<sub>2</sub> estimation and HS detection. While the results are promising, the model's performance is constrained by 10 healthy subject datasets. Future work will require validation with more diverse datasets to enhance generalizability and robustness.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251333375"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251333375","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Gait analysis plays a critical role in healthcare, biomechanics, and sports science, particularly for estimating energy expenditure (EE). This study introduces a hybrid machine learning approach integrating convolutional neural networks (CNNs), long-short-term memory (LSTM) networks, and transfer learning (TL) to estimate volume of oxygen (VO2) and detect heel strikes (HS) using data from a single 9-axis inertial measurement unit (IMU).

Methods: A clinical-grade VO2 machine provided reference data for model training. The hybrid model was designed to combine spatial and temporal feature extraction capabilities from CNNs and LSTM networks while leveraging pre-trained weights through TL. The study compared the performance of the hybrid model with an LSTM-only approach to quantify improvements in VO2 prediction.

Results: The hybrid model significantly reduced the VO2 prediction error from 20% to 3% compared to using LSTM-only approach. Additionally, the model demonstrated high accuracy for HS detection, achieving 93.53% accuracy as indicated by training and validation results. The lightweight IMU-based system proved effective for VO2 estimation, offering a practical alternative to traditional VO2 measurement systems, which are often complex, bulky, and uncomfortable for subjects.

Conclusions: This study highlights the potential of a hybrid machine learning approach using IMU-based systems for accurate VO2 estimation and HS detection. While the results are promising, the model's performance is constrained by 10 healthy subject datasets. Future work will require validation with more diverse datasets to enhance generalizability and robustness.

基于惯性传感器的足跟冲击和混合机器学习方法的能量消耗预测。
目的:步态分析在医疗保健、生物力学和运动科学中起着至关重要的作用,特别是在估计能量消耗(EE)方面。本研究引入了一种混合机器学习方法,该方法集成了卷积神经网络(cnn)、长短期记忆(LSTM)网络和迁移学习(TL),利用单个9轴惯性测量单元(IMU)的数据来估计氧气体积(VO2)并检测脚跟撞击(HS)。方法:临床级VO2机为模型训练提供参考数据。该混合模型旨在结合cnn和LSTM网络的时空特征提取能力,同时利用TL预训练的权值。该研究将混合模型的性能与仅使用LSTM的方法进行了比较,以量化VO2预测的改进。结果:与仅使用lstm方法相比,混合模型将VO2预测误差从20%显著降低到3%。此外,训练和验证结果表明,该模型对HS检测具有较高的准确性,准确率达到93.53%。基于imu的轻量级系统被证明是有效的VO2估计,为传统的VO2测量系统提供了一种实用的替代方案,传统的VO2测量系统通常复杂、笨重且不舒服。结论:本研究强调了使用基于imu的系统进行准确VO2估计和HS检测的混合机器学习方法的潜力。虽然结果很有希望,但该模型的性能受到10个健康受试者数据集的限制。未来的工作将需要用更多样化的数据集进行验证,以增强泛化性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信