Exploring the Connection Between BDNF/TrkB and AC/cAMP/PKA/CREB Signaling Pathways: Potential for Neuroprotection and Therapeutic Targets for Neurological Disorders.
Abhishek Kumar Gupta, Sumedha Gupta, Sidharth Mehan, Zuber Khan, Ghanshyam Das Gupta, Acharan S Narula
{"title":"Exploring the Connection Between BDNF/TrkB and AC/cAMP/PKA/CREB Signaling Pathways: Potential for Neuroprotection and Therapeutic Targets for Neurological Disorders.","authors":"Abhishek Kumar Gupta, Sumedha Gupta, Sidharth Mehan, Zuber Khan, Ghanshyam Das Gupta, Acharan S Narula","doi":"10.1007/s12035-025-05001-5","DOIUrl":null,"url":null,"abstract":"<p><p>The BDNF/TrkB and AC/cAMP/PKA/CREB signaling pathways play a vital role in neuroplasticity, neuronal survival, and cognitive functions. This review explores its physiological and pathological implications in neurological disorders, with a focus on neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs). Neurological conditions increasingly burden public health, making understanding the biochemical mechanisms that underpin these diseases critical. BDNF, a neurotrophic factor, binds to the TrkB receptor, activating multiple intracellular signaling cascades that regulate cellular responses essential for neurogenesis, memory, and learning. Dysregulation within this pathway has been linked to various NDDs, as well as NPDs. Key components of the path, including adenylyl cyclase and cyclic AMP, mediate the effects of neurotransmitters and growth factors, influencing downstream targets like PKA and CREB, which are crucial for gene expression and synaptic changes. Furthermore, the review discusses the challenges of targeting this pathway for therapeutic interventions, including receptor isoform diversity, blood-brain barrier penetration, and potential side effects. Future strategies may include the development of selective TrkB modulators, nanoparticle carriers for drug delivery, and innovative gene therapy techniques. Advancing the understanding of this complex signaling network holds promise for effective interventions in treating neurological and psychiatric disorders, ultimately enhancing neuroprotection and cognitive resilience.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05001-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The BDNF/TrkB and AC/cAMP/PKA/CREB signaling pathways play a vital role in neuroplasticity, neuronal survival, and cognitive functions. This review explores its physiological and pathological implications in neurological disorders, with a focus on neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs). Neurological conditions increasingly burden public health, making understanding the biochemical mechanisms that underpin these diseases critical. BDNF, a neurotrophic factor, binds to the TrkB receptor, activating multiple intracellular signaling cascades that regulate cellular responses essential for neurogenesis, memory, and learning. Dysregulation within this pathway has been linked to various NDDs, as well as NPDs. Key components of the path, including adenylyl cyclase and cyclic AMP, mediate the effects of neurotransmitters and growth factors, influencing downstream targets like PKA and CREB, which are crucial for gene expression and synaptic changes. Furthermore, the review discusses the challenges of targeting this pathway for therapeutic interventions, including receptor isoform diversity, blood-brain barrier penetration, and potential side effects. Future strategies may include the development of selective TrkB modulators, nanoparticle carriers for drug delivery, and innovative gene therapy techniques. Advancing the understanding of this complex signaling network holds promise for effective interventions in treating neurological and psychiatric disorders, ultimately enhancing neuroprotection and cognitive resilience.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.