TumorTwin: A python framework for patient-specific digital twins in oncology.

ArXiv Pub Date : 2025-05-01
Michael Kapteyn, Anirban Chaudhuri, Ernesto A B F Lima, Graham Pash, Rafael Bravo, Karen Willcox, Thomas E Yankeelov, David A Hormuth Ii
{"title":"TumorTwin: A python framework for patient-specific digital twins in oncology.","authors":"Michael Kapteyn, Anirban Chaudhuri, Ernesto A B F Lima, Graham Pash, Rafael Bravo, Karen Willcox, Thomas E Yankeelov, David A Hormuth Ii","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Advances in the theory and methods of computational oncology have enabled accurate characterization and prediction of tumor growth and treatment response on a patient-specific basis. This capability can be integrated into a digital twin framework in which bi-directional data-flow between the physical tumor and the digital tumor facilitate dynamic model re-calibration, uncertainty quantification, and clinical decision-support via recommendation of optimal therapeutic interventions. However, many digital twin frameworks rely on bespoke implementations tailored to each disease site, modeling choice, and algorithmic implementation.</p><p><strong>Findings: </strong>We present TumorTwin, a modular software framework for initializing, updating, and leveraging patient-specific cancer tumor digital twins. TumorTwin is publicly available as a Python package, with associated documentation, datasets, and tutorials. Novel contributions include the development of a patient-data structure adaptable to different disease sites, a modular architecture to enable the composition of different data, model, solver, and optimization objects, and CPU- or GPU-parallelized implementations of forward model solves and gradient computations. We demonstrate the functionality of TumorTwin via an in silico dataset of high-grade glioma growth and response to radiation therapy.</p><p><strong>Conclusions: </strong>The TumorTwin framework enables rapid prototyping and testing of image-guided oncology digital twins. This allows researchers to systematically investigate different models, algorithms, disease sites, or treatment decisions while leveraging robust numerical and computational infrastructure.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060987/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Advances in the theory and methods of computational oncology have enabled accurate characterization and prediction of tumor growth and treatment response on a patient-specific basis. This capability can be integrated into a digital twin framework in which bi-directional data-flow between the physical tumor and the digital tumor facilitate dynamic model re-calibration, uncertainty quantification, and clinical decision-support via recommendation of optimal therapeutic interventions. However, many digital twin frameworks rely on bespoke implementations tailored to each disease site, modeling choice, and algorithmic implementation.

Findings: We present TumorTwin, a modular software framework for initializing, updating, and leveraging patient-specific cancer tumor digital twins. TumorTwin is publicly available as a Python package, with associated documentation, datasets, and tutorials. Novel contributions include the development of a patient-data structure adaptable to different disease sites, a modular architecture to enable the composition of different data, model, solver, and optimization objects, and CPU- or GPU-parallelized implementations of forward model solves and gradient computations. We demonstrate the functionality of TumorTwin via an in silico dataset of high-grade glioma growth and response to radiation therapy.

Conclusions: The TumorTwin framework enables rapid prototyping and testing of image-guided oncology digital twins. This allows researchers to systematically investigate different models, algorithms, disease sites, or treatment decisions while leveraging robust numerical and computational infrastructure.

肿瘤双胞胎:肿瘤患者特异性数字双胞胎的python框架。
背景:计算肿瘤学的理论和方法的进步使肿瘤生长和治疗反应在患者特异性基础上的准确表征和预测成为可能。这种能力可以集成到一个数字孪生框架中,在这个框架中,物理肿瘤和数字肿瘤之间的双向数据流促进了动态模型的重新校准、不确定性量化,并通过推荐最佳治疗干预措施来支持临床决策。然而,许多数字孪生框架依赖于针对每个疾病部位、建模选择和算法实现量身定制的实现。研究结果:我们提出了TumorTwin,这是一个模块化的软件框架,用于初始化、更新和利用患者特异性癌症肿瘤数字双胞胎。TumorTwin是一个公开的Python包,带有相关的文档、数据集和教程。新颖的贡献包括开发适应不同疾病部位的患者数据结构,模块化架构以实现不同数据、模型、求解器和优化对象的组合,以及CPU或gpu并行实现前向模型求解和梯度计算。我们通过高级别胶质瘤生长和放射治疗反应的计算机数据集证明了TumorTwin的功能。结论:TumorTwin框架实现了图像引导肿瘤数字双胞胎的快速原型和测试。这使得研究人员能够系统地研究不同的模型、算法、疾病部位或治疗决策,同时利用强大的数值和计算基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信