Improving prediction of bacterial sRNA regulatory targets with expression data.

IF 2.8 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-05-08 eCollection Date: 2025-06-01 DOI:10.1093/nargab/lqaf055
Yildiz Derinkok, Haiqi Wang, Brian Tjaden
{"title":"Improving prediction of bacterial sRNA regulatory targets with expression data.","authors":"Yildiz Derinkok, Haiqi Wang, Brian Tjaden","doi":"10.1093/nargab/lqaf055","DOIUrl":null,"url":null,"abstract":"<p><p>Small regulatory RNAs (sRNAs) are widespread in bacteria. However, characterizing the targets of sRNA regulation in a way that scales with the increasing number of identified sRNAs has proven challenging. Computational methods offer one means for efficient characterization of sRNA targets, but the sensitivity and precision of such computational methods is limited. Here, we investigate whether publicly available expression data from RNA-seq experiments can improve the accuracy of computational prediction of sRNA regulatory targets. Using compendia of 2143 <i>Escherichia coli</i> RNA-seq samples and 177 <i>Salmonella</i> RNA-seq samples, we identify groups of co-expressed genes in each organism and incorporate this expression information into computational prediction of sRNA targets based on machine learning methods. We find that integrating expression information significantly improves the accuracy of computational results. Further, we observe that computational methods perform better when trained on smaller, higher quality sets of targets rather than on larger, noisier sets of targets identified by high-throughput methods.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 2","pages":"lqaf055"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060007/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Small regulatory RNAs (sRNAs) are widespread in bacteria. However, characterizing the targets of sRNA regulation in a way that scales with the increasing number of identified sRNAs has proven challenging. Computational methods offer one means for efficient characterization of sRNA targets, but the sensitivity and precision of such computational methods is limited. Here, we investigate whether publicly available expression data from RNA-seq experiments can improve the accuracy of computational prediction of sRNA regulatory targets. Using compendia of 2143 Escherichia coli RNA-seq samples and 177 Salmonella RNA-seq samples, we identify groups of co-expressed genes in each organism and incorporate this expression information into computational prediction of sRNA targets based on machine learning methods. We find that integrating expression information significantly improves the accuracy of computational results. Further, we observe that computational methods perform better when trained on smaller, higher quality sets of targets rather than on larger, noisier sets of targets identified by high-throughput methods.

利用表达数据改进细菌sRNA调控靶点的预测。
小调控rna (sRNAs)在细菌中广泛存在。然而,随着鉴定的sRNA数量的增加,以一种可扩展的方式表征sRNA调控的目标已被证明具有挑战性。计算方法为有效表征sRNA靶点提供了一种手段,但这种计算方法的灵敏度和精度是有限的。在这里,我们研究了来自RNA-seq实验的公开表达数据是否可以提高计算预测sRNA调控靶点的准确性。利用2143份大肠杆菌RNA-seq样本和177份沙门氏菌RNA-seq样本的概要,我们确定了每个生物体中共表达的基因群,并将这些表达信息纳入基于机器学习方法的sRNA靶标的计算预测中。我们发现整合表达式信息可以显著提高计算结果的准确性。此外,我们观察到计算方法在更小、更高质量的目标集上训练时比在高通量方法识别的更大、更嘈杂的目标集上训练时表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信